
Model description 
 
Rangelands are the semi-arid regions of the world that are too dry for reliable crop cultivation 
and hence used for livestock production of one form or another. The vegetation is 
characteristically a mixture of grasses, shrubs and trees, ranging from pure grasslands to the 
woodland savannas of the subhumid tropics. Depending on the kind of rangeland, the welfare of 
the pastoralists who live in them is based on grazing animals (cattle and sheep), mixed feeders 
(browsers and grazers like camels and goats) or a combination of both. Fire has been an integral 
part of the environment of rangelands, and the net effect has been to maintain rangelands in more 
open, grassy states than would be achieved in the absence of fire. Fire is not a disturbance in 
most rangelands; fire suppression is a disturbance. 
 The model described is based on Janssen et al. (2000; 2002; 2004), and Anderies et al. 
(2002). The model describes the interactions between perennial grass, shrubs, fire and 
commercial stock in a stylized way, based conceptually on the functioning of semi-arid 
woodlands and shrublands in western New South Wales in Australia. The grass plant consists of 
the crown, the root system, and the shoots, the above- ground grass portion of the plant. The 
biomass of grass shoots is denoted by s, and follows a traditional logistic function. The crown 
promotes growth of the shoots according to the tiller potential c * ac  independent of grass 
biomass, and through its interaction with above ground biomass via the term c * s. Competition 
between woody shrubs and grass reduces the grass growth. This is captured by the term αus * wβ, 
where αws is a competition coefficient, and where β (>1) leads to a growth reduction effect of 
woody shrubs that does not kick in until shrubs reach a relatively high density. Grass is removed 
by grazing pressure via the terms zmax and qz. We assume that there is a maximum number of 
sheep per unit area the pastoralist will allow, zmax. The pastoralist uses a control variable, qz, 
which defines the shrub density beyond which the pastoralist will reduce grazing pressure. If qz 
is high pastoralists reduce grazing pressure at a higher level of shrub density. Finally, grass 
biomass can be consumed by fire I, which has a general response function of form f().  

 
s[t+1]=s[t]+c[t]*(ac + s[t])*(1 – s[t]-αws * wβ )- zmax *(1-f(w[t],qz,bzmax) * f(s[t], 0.1,1) -

I[t]*f(s;as, bs) 
 
The response curve is a monotonically increasing function bounded above by 1; if b > 1, the 
function is sigmoidal. The parameter a controls the location of the point where f is half its 
maximum value, and b controls the steepness of the increasing portion. The larger the value of b, 
the more rapid is the switching. 
 
f(k;a,b)=kb / (ab + kb) 
 
The crown biomass c grows at rate rcs and dies at a rate 1. The grass growth is dependent on the 
presence of the crown. 
 
c[t+1] = c[t] + rc * s[t] – c[t] 
 
The fire consumption index captures the consequences of fire. A fire will break out when the 
grass biomass s grows a little beyond ax. The term δI denotes the rate at which the fire begins to 



die out. The parameter rI represents the rate of increase of the fire consumption index once 
sufficient fuel is present. 
 
I[t+1]=I[t]+I[t]*rI *(f(s[t];aI , bI )– δI) 
 
Woody shrubs are simply defined as a logistic growth function, where rw represents the intrinsic 
growth rate of shrubs. Furthermore, fire can consume woody shrubs as denoted by the last term 
of the equation: 
 
w[t+1] = w[t] + rw *w[t]*(1-w[t])-γIw *w[t]*f(I[t];aw, bw) 
 

With no manager or sheep, fires will die out naturally when the fuel load is consumed. 
With increasing numbers of sheep on the property, the pastoralist must suppress fire to provide 
feed for the stock and maintain wool production. If z increases, the pastoralist would increase ܫߜ 
from its minimum value of λ up to a maximum of 1. The control variable qδ defines a threshold 
stocking rate at which the pastoralist begins to suppresses fire, and bδ defines the sharpness of the 
pastoralists response as this threshold is approached. As such we define δI as 
 
δI[t]=λ-(1-λ)*f(z[t],qδ,bδ) 
 
Building on Janssen et al. (2004) we define the profit of a pastoralist as a function of wool 
production, the cost of mustering sheep, adjustment costs associated with changes in grazing 
pressure, and lost revenue when grass during a fire. The first two elements are driven indirectly 
by grass and shrub dynamics in the system. The second two are direct consequences of 
management action and are thus related to the choice of control parameters. 

Wool production is assumed to be a function of the number of sheep and their nutritional 
status as measured by grass offtake. When grass biomass is low, offtake will be low and the 
animals will be malnourished. This will cause wool production to go down. In the semi-arid 
region of Australia supplementary feeding is not economically feasible. When shoot biomass is 
high, offtake will be high, sheep will be well nourished, and sheep numbers will be the primary 
determinant of wool production,  and wool production varies with z: Costs associated with 
shrubs are related to mustering—locating and gathering animals on several occasions per season. 
The more shrubs, the more difficult and costly it is to muster the animals. The cost per animal 
associated with shrubs does not increase significantly until shrub density is quite high. A first-
order approximation to capture this fact is a quadratic representation. This yields a cost per unit 
of grazing pressure of Cw2 . 

The cost of adjusting the sheep density (moving sheep on or off the property), Ca; is 
directly related to the derivative of the sheep density. Assuming a constant movement cost per 
sheep (agistment costs), we assume that changes in the stock level are due entirely to 
management actions. This, of course, is not completely accurate. However, given that managers 
decide when to mate their ewes and rams, when to buy, sell, and move their stock, one can 
assume that these adjustments are stronger determinants of the stock dynamics than natural 
population dynamics. 

Now we can define the profit function π[t] in time step t as 
 
π[t]=z*(f(s[t],0.1,1) - Cw * w[t]2) – Ca * |∆z| 



 
What is the best management policy for the rangeland system? We can formulate this as an 
optimization problem where a pastoralist maximize the accumulation of discounted profits given 
zmax , qz and qδ being the control variables. We can solve this problem in Netlogo using the 
genetic algorithm from the behavior search tool of Netlogo. When we use an annual discount rate 
of 2%, we that the optimal values of the control parameters are 0.324 for zmax, 0.582 for qz and 
0.347 for qδ. This leads to a 3 year cycle of the system in which the stocking is adjusted between 
0.33 and 0.36, and the grass biomass is kept at a high level due to fire suppression. In Figure 2 
we see that the stocking rate declines when the biomass of shrubs is increasing. But because the 
control strategy keeps the shrub level contained, the stocking rates are varying not that much 
either.  

 
Figure 1: The optimal strategy depicted in a phase plane of grass and shrub levels. 

   
Figure 2: The control strategy for stocking levels as a function of shrub biomass. The optimal 
strategy is the outcome of the optimization without stochastic events. The robust solution is the 
outcome of the optimization with stochastic rainfall events. 
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Figure 3: The control strategy for fire suppression levels as a function of stocking rate. The 
optimal strategy is the outcome of the optimization without stochastic events. The robust solution 
is the outcome of the optimization with stochastic rainfall events. 
 
We now include rainfall variability into the model. Variability in rainfall patterns increases the 
vulnerability of the system to grazing pressure. In wet years, the shrub growth is faster. This, 
combined with heavy grazing pressure which reduces the accumulation of shoot-biomass will 
increase the chance that the system will fall into the stability domain dominated by shrubs. In 
this case more caution is needed to manage shrubs when rainfall is variable. A rainfall is defined 
which will affect growth rates of crowns, shoots and shrubs, and follows a lognormal distribution 
with mean 1 and variance 0.28: 
 
rf = exp(n(-0.125,0.5)) 
 
When we use a genetic algorithm to find an optimal solution, we calculate the value of the 
objective function as the mean of 100 runs with different rainfall patterns. The resulting optimal 
solution can therefore be considered as a robust solution leading to on average a high mean value 
of accumulated discounted profits for diverse rainfall patterns. The maximum stocking level is 
halved (zmax =0.166 and qz=0.58), and fire suppression is much higher at lower stocking levels 
(qδ=0.087). 
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