Model description

1 Purpose

Community-based natural resource management (CBNRM) has been suggested as a method of resource
conservation that empowers traditionally marginalized communities. This ABM hopes to contribute to the
growing body of ABMs simulating CBNRM to help improve realism of CBNRM ABMs. The model builds
on an existing model of community forest management first designed by Bravo [1] and then expanded upon
by Vallino [3, 4]. It is implemented in NetLogo [5].

2 Agents and variables

The model is set in a forest environment and is structured as a 50 x 50 grid, where each patch is a section of
the forest described by the traits given in Table 1. The model contains two classes of agents. Logger agents
represent loggers in the forest. Logger agent traits are given in Table 2. There is one Institution agent which
represents a community management system. The Institution agent traits are given in Table 3. Global state
variables, which guide the overall evolution of agents and the environment, are given in Table 4. There are
no spatial or temporal units for this model.

3 Model rules

The simulation is broken into periods, where each period consists of 10 ticks. At each tick, Loggers start
by moving to a new patch within their neighborhood and decreasing their payoff by cost. This represents
the Loggers’ cost of living. The Loggers then decide if they should log the forest. Loggers’ decisions as
to whether they should log a patch are dictated by the current-institution, an indication of the CBNRM
rules. The current-institution starts at 0, indicating that any living patch may be logged at the beginning
of the simulation, but changes as the simulation progresses. Loggers go to a random patch within their
neighborhood with trees > current-institution and log the patch. When logging a patch, the Logger’s payoff
is increased by the t¢rees on the patch, and the patch’s trees is set to zero (i.e. the Logger cuts down all
trees on that patch). If there are no patches with trees > current-institution within their neighborhood, the

Table 1: Patch traits

Variable Description Type Value(s)
pxcor, py- The x, y-coordinates of a patch, indicating its location  static {0,1,...,50}
cor on the environment grid.

trees The tree biomass on the patch. Living patches contain  dynamic [0, bimaz]

trees > 0 and empty patches contain trees = 0. At
the beginning of the simulation,
trees ~ U(%bmw7 bmaz)-




Table 2: Logger traits

Variable

Description

Type

Value(s)

xcor, ycor

reference-trees

mainimal-cut

payoff
old-payoff

payoff-
satisfaction

neighborhood

prob-cheat (p.)

The z and y-coordinates indicating the
patch the Logger is on. The location of
each Logger is randomly selected at the be-
ginning of the simulation.

The fraction of initial tree biomass the Log-
ger believes should be conserved in the
forest environment. This value represents
how “environmentally-minded” the Logger
is. At the beginning of the simulation, for
each Logger this value is drawn randomly
from a normal distribution with mean 0.5
and standard deviation 0.25.

The minimal level of tree biomass the Log-
ger believes a patch must contain in order
to be logged. Larger minimal-cut indicates
the Logger is less likely to log the forest.
At the beginning of the simulation minimal-
cut= 0 for all Loggers.

How much a Logger earns (or loses) during
a period of 10 ticks.

Final payoff from the previous period.
Indicates whether the Logger is happy with
the state of the forest. This value is set to 1
at the beginning of the simulation (indicat-
ing they are content with the state of the
forest).

All patches within a 5x5 square centered at
the location of the Logger.

The probability a specific Logger will
cheat. All Loggers start with p. =
initial-prob-cheat.

dynamic

dynamic*

dynamic

dynamic

dynamic
dynamic

dynamic

dynamic

{0,1, ...,50}

[07 bmam]

[—10 cost, 10(byaz — cost)]

[—10 cost, 10(byaz — cost)]
{0, 1}

* While this value is dynamic, it rarely changes; only one Logger adjusts their reference-trees each period
(see rule descriptions).



Table 3: Institution traits

Variable Description Type Value(s)
tolerance- The value determining when Loggers become un- static %bmam
threshold satisfied with the current rules of the Institution.

For our analysis, tolerance-threshold was set to

“high” for all simulation runs.
current- The minimum level of tree biomass that a patch dynamic [0, bmaz]
institution must have in order for it to be logged. This essen-

tially establishes the rules for when trees can be

logged in the CMS. This value is set to 0 at the be-

ginning of the simulation and is subsequently ad-

justed to follow the mean of all Logger’s minimal-

cuts.
unsatisfied The number of Loggers unhappy with the dynamic [0, instial-loggers]
current-institution. Unsatisfied Loggers have
payoff-satisfaction = 0 or |minimal-cut —
current-institution| > tolerance-threshold .
monitoring- The probability Loggers will be caught cheating static [0,100]
level (as a percentage).
sanction-level ~ The effectiveness of sanctions used to discourage static [0,1]

Loggers from cheating.

Table 4: Global variables

Variable Description Type Value(s)
maz-tree-growth The maximum possible level of biomass on each static 20%*
(bmaz) patch. This establishes a carrying-capacity for

the forest.
growth-rate The amount of biomass increase per tick on non-  static 0.5

empty patches.

cost Income needed for sustenance. There is a fixed static 5%
cost agents must pay each round.

growth-prob The probability an empty patch will grow back static 0.05
when all surrounding patches are alive.

inatial-loggers The number of Logger agents at the beginning of static 100*
the simulation.

reference- The “environmentalism level” of the community. static 0.5%

threshold Loggers’ reference-trees are chosen from a normal

distribution with mean reference-threshold and
standard deviation 0.25.

initial-prob-cheat ~ The initial probability of cheating for all Loggers. static [0,1]

* Base parameters. These are manipulated during sensitivity analysis.



Table 5: Definition of payoff-satisfaction for the M & S model. Loggers’ payoff-satisfaction is updated at
the end of each period.

Current payoff-satisfaction d = old-payoff — payoff New payoff-satisfaction

1 d<0 0 with probability ¢
0 d<0 0
T d>0 1
T d=0 x

Logger moves to a random patch within their neighborhood. If the patch is not empty, they decide if they
should cheat.

Loggers can cheat when they are unsatisfied. Cheating means that Loggers cut down the trees on the
patch they occupy even if trees < current-institution. Each Logger starts with p. = initial-prob-cheat, and
this value is updated independently for each Logger as the simulation progresses. Unsatisfied Loggers must
weigh the consequences of cheating versus not cheating to determine if they should follow Institution rules.
We assume the probability a Logger will cheat depends on the Logger’s perception of both how likely they
are to be caught and the repercussions if they are caught. In other words:

1. Loggers who are caught cheating are less likely to cheat again.
2. Loggers who are not caught cheating are more likely to cheat again.

3. If sanctioning is more effective, the above effects will be greater.
If a Logger chooses to cheat, the monitoring-level parameter determines the probability the Logger is
caught. When a Logger cheats, p. is updated by the following equation:

(1)

Ap. — —Pe X sanction-level if caught
Pe = (1 — p.) x sanction-level if not caught

The forest also grows as the simulation progresses. All patches with trees > 0 are considered “alive”. At
each tick, the trees on all living patches with trees < b,,q, increases by growth-rate. Empty patches grow

trees with probability

N +1
p = growth-prob X 9+ ,

where N is the number of adjacent or diagonally adjacent patches that are alive. This represents trees
propagating from adjacent patches to the empty patch. If an empty patch grows trees, we set trees = 1 for
that patch.

When a period ends (i.e. after every 10 ticks), the Loggers update their satisfaction with the Institution.
A Logger’s payoff-satisfaction depends upon the Logger’s payoff-satisfaction from the previous round. At the
end of a period, all Loggers with payoff > old-payoff are satisfied. Loggers with payoff = old-payoff maintain
the same payoff-satisfaction as in the previous period. If payoff < old-payoff, Loggers who were unsatisfied
with their payoff remain unsatisfied, and Loggers who were satisfied become unsatisfied with probability

_ payoff — old-payoff @)
~ |payoffl + |old-payoffi’

These rules are outlined in Table 5.

Loggers with payoff-satisfaction = 0 then adjust their minimal-cut. The adjustment depends upon the
number of Living-Patches in the forest. When Living-Patches < reference-trees, their minimal-cut increases
by X ~ U(0,9), and when Living-Patches > reference-trees their minimal-cut decreases by X ~ U(0,9).
If the amount of forest remaining is less than the amount the Logger believes is appropriate, the Logger
attributes the decreased payoff to depletion of the forest, causing them to become more environmentally-
minded and increase their minimal-cut. In contrast, if the amount of forest remaining is more than the



Table 6: Parameter values used during sensitivity analysis.

Parameter Base value Tested values
cost 5 {0, 2, ... 20}
max-tree-growth 20 {5, 10, ... 30}
reference-threshold 0.5 {0.1,0.2, ... 1}
initial-loggers 100 {60, 80, ... 200}
monitoring-level 50 {0, 10, ... 100}
sanction-level 0.5 {0, 0.1, ... 1}
initial-prob-cheat 0.5 {0, 0.1, ... 1}

amount the Logger believes is appropriate, the Logger attributes the decreased payoff to not logging enough
of the forest, and they decrease their minimal-cut.
The current-institution is also updated at the end of each period if

2
unsatisfied > 3 initial-loggers.

Loggers become unsatisfied when their payoff-satisfaction = 0 or |minimal-cut — current-institution| >
tolerance-threshold. When % of the Loggers are unsatisfied with the Institution, the current-institution
is set to the mean of all Loggers’ minimal cuts. Since minimal-cut is a Logger’s belief about how much
biomass there should be on a patch before the patch can be logged, the mean minimal-cut of the community
represents a compromise among community members regarding how much biomass should be present for a
patch to be logged. This assumes that all Loggers have equal weight in the decision-making process.

The end of each period also allows for a “selection process” among the Loggers. The Logger with the
lowest payoff is replaced by a copy of the Logger with the highest payoff. The new Logger is placed on
a random patch and their minimal-cut is set to zero. The new Logger now has the same reference-trees
and payoff as the most successful Logger. This represents unsuccessful Loggers adopting the behavior of
successful Loggers.

At the end of the period, for each Logger, old-payoff is set to the payoff of the most recent period, and
payoff is reset to zero. For more justification of the rules and setup of the model, see Bravo 2011 [1] and
Vallino 2014 [3].

4 Sensitivity analysis

A sensitivity analysis and analysis of model emergent behaviors is found in Lapp 2020 [2]. Variable values
used during analysis are given in Table 6. Each parameter set was run 50 times and allowed to continue for
2,000 ticks, where they reached a steady-state.
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