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Model definition and state transition diagram 
 

The definition of our model's compartments and state transition diagram inherits intuitions 
from the literature and adds some variations to better serve to our research goal (30-33). In 
Figure S1, we show the state transition diagram with compartments as nodes and edges labelled 
with transition probabilities. Table S1 summarizes the characteristics of compartments with a 
description of the configurations for simulations. 

The first compartment is for Susceptible (S) individuals, which could be infected when, in 
the contact network, a directly connected peer is in an infected state. Infection propagation is 
modelled starting with a general transmission probability empirically evaluated with respect to 
the reference scenario (i.e., scenarios considered are: 10, 30, or 50% of total infected at the end 
of the epidemic (infection attack rate)). This general transmission probability represents the 
infectivity of a full viral dose, which is present in individuals developing acute symptoms (Acute 
Infected compartment, discussed in the following). The transmission probability is reduced for 
individuals in different conditions, namely incubating the infection and with mild or no 
symptoms. 

Logically following the Susceptible state, we have included the Incubating Infected (II) 
state. A state representing the disease incubation time has a long tradition in deterministic and 
stochastic models in epidemiology (32). Among compartmental models, the standard SEIR 
dubbed it Exposed (35), which became Latent in other SLIAR models, specifically referring to 
incubating but not infectious persons (15, 36). Others, like (37), studying the 2002-2003 SARS 
epidemic, did not consider a specific state for those incubating the disease being not infectious. 
Instead, they defined an Asymptomatic compartment as the first stage for all susceptible cases 
turned infected. In that state, persons are infectious and could possibly be quarantined or develop 
a fully symptomatic state. With respect to our research goal, both these two standard approaches 
were not suitable. There is no purpose in our model to specify an incubating not infectious state, 
because irrelevant for the study of the dynamics of infectious individuals being isolated or free to 
roam their contact network. On the other hand, regarding the current COVID-19 epidemic, some 
epidemiologists analyzing a sample from the Chinese outbreak have reached the conclusion that 
individuals could develop infectivity in the incubation period (19). Being this possibility relevant 
for our study, we have included the Incubating Infectious (II) state with the specific meaning of 
modelling the time period of infectivity during the disease incubation.    

The distinction between symptomatic and asymptomatic infected individuals was originally 
introduced by (12) as an extension of the standard SEIR model, by postulating the fundamental 
assumption that only the symptomatic cases withdraw with some probability to a restricted place 
(e.g., home confined, hospitalized). Most recent epidemic models, conveniently customized, are 
based on that distinction (35). Following the introduction of the two classes for the symptomatic 
and the asymptomatic cases, models have attempted to manage the different social impacts. In 
(35), the two new classes are added to represent different forms of social distancing: Generic 
quarantine for the asymptomatic and specific isolation for the symptomatic. The quarantine 
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compartment is useful for modelling the dynamic of the contagion when a social distancing 
policy is enforced by the public health authority (e.g., national/federal state, regional/local 
authority) in order to limit contacts between casual susceptible persons and undiagnosed infected 
individuals, untested and often asymptomatic. Differently, symptomatic infected are supposed to 
be diagnosed and strictly isolated, for example in a medical facility or hospital, within a certain 
time frame from the outset of symptoms or after a positive test. With respect to our goal, the 
quarantine state is not strictly needed to study the final phase of the epidemic. What matter most 
to us is to account for the ability to spread the contagion of all undiagnosed infected individuals, 
both in case they are free to move or in a regime of limited movements, with respect to those 
whose infectivity has been diagnosed and contained. Consequently, in our model, we have 
included two states called Mild Infected (MI) and Acute Infected (AI) as key for our research 
goal, because most of current uncertainty about the real extent of the epidemic relies on the 
former class, whether official communications from national emergency task forces and 
international organizations refer to the latter. Then we added a single Contained (C) state for 
those individuals infected and isolated. For our research goal, the Contained compartment serves 
the purpose of modelling those whose ability to spread is greatly reduced by means of personal 
containment measures, with respect to others without limitations (or only subject to a general 
social distancing policy). 

We make the hypothesis that public health authorities as well as information networks and 
the press and, in general, public opinion makers, in the final phases of the epidemics will be 
primarily influenced by the dynamics of the Acute Infected and the Contained classes, as 
recorded by official statistics, and will be unable to account for risks brought by the mostly 
unknown Mild Infected class. 

The last compartment of our model is the traditional Recovered/Removed (R), which 
accounts for all individuals that end the epidemic process and have acquired immunization or 
deceased. In this work, we do not consider the case of re-infection and temporary immunization. 
One reason is because we explicitly aim to focus on the last period of the first epidemic wave 
and the potential risks due to undiagnosed infected, therefore we assume that even in case of 
temporary immunization, the rate of re-infections would be not particularly relevant in that 
specific time frame. Another reason is that at present, to the best of our knowledge, the possible 
temporary immunization for COVID-19 patients is still a hypothesis investigated by medical 
researchers and epidemiologists.  

Table S2 lists the state transition probabilities showed in Figure S1 with a description and 
the values used for simulations. In Figure S2 the state transition diagram is presented with 
simulation values and assumptions described in Table S2 (e.g., we do not consider the case of AI 
individuals spontaneously recover without being diagnosed and contained, and the corresponding 
direct link between states AI and R has been removed).    
 
Model execution 
 

The execution of the model is described in Algorithm 1. Each iteration represents a time 
step in simulation time. At every time step, each node is selected in random order and, if in state 
S its state is checked with respect to peers, or if in other states, according to time periods specific 
of states II, MI, AI, and C. The probability of a node S to become infected depends on infected 
peers II, MI and AI, independently (𝜇 is the reduction factor to account for reduced viral dose of 
II and MI). For simplicity, we have not listed here the variation tested with the C class also 
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infectious. The list of parameters for the initialization of simulations has been presented in Table 
S3. 
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Algorithm 1: Time-discrete multi-agent model execution 
Input: Adjacency matrix (A_i,j), selecting random seeds, attributing the TII , TMI , TAI , TC|MI 
and TC|AI to each nodes according to defined distributions.   
for t in Timesteps: 
   for i in A_i,j:  
      At each timestep t, for all nodes in A_i,j,  run the model according to the current node's  
state.  
Case S: 
      if i in state S: 
          for j in A_i,j and in states (II,MI,AI): 
              for each peer in state AI 
                  With probability p_trans change the state to II. 
              end for each 
              for each peer in state MI 
                   With probability 𝜇p_trans change state to II. 
.             end for each 
          end for 

Case II: 
      if i in state II:  
           Remain in II for T_II(i) = gamma(α, t_II_mean/α) steps. 
           if rand[0,1) < MI/(MI+AI) then change state to MI. 
           else change state to AI. 
Case MI: 
      if i in state MI: 
            Remain in MI for T_MI(i) = norm(TMI) steps. 
            if rand[0,1) < P(MI,C) then change state to C. 
            else change state to R. 

Case AI: 
      if i in state AI: 
            Remain in AI for T_AI(i) = gamma (α, t_AI_mean/α) steps. 
            When T_AI(i) expires then change state to C. 
Case C:  
      if i in state C: 
            if at t-1 i changed state from MI: 
                 Remain in C for T_C(i) = norm(TC) steps, then move to R. 
            elif  at t-1 i changed state from AI: 
                 Remain in C for T_C(i) = norm(TC) steps, then move to R. 
      end for 
Case R: 
           if i in state R: 
                 Remain in R. 
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Fig.  S1: State transition diagram.  
The model consists of six states: S (Susceptible), II (Incubating Infected), MI (Mild Infected), AI 
(Acute Infected), C (Contained), and R (Recovered/Removed).  
For sake of clarity, transition probabilities are showed with a notation different from typical 
epidemiologic studies, which adopt Greek letters. Here a probability is showed with a single 
parameter when meant to be the probability to remain in current state (e.g., P(S) is the 
probability of an agent to remain susceptible); instead, it is showed with two parameters to 
denote the probability to change state (e.g., P(II,AI) is the probability of an incubating infected 
node to move in the acute infected state). For all transitions except one, the diagram is a discrete-
time memoryless Markov chain. The exception is the state transition from Contained (C) to 
Recovered (R), which depends on the previous transition, because from epidemiologic studies 
and medical reports of the COVID-19 pandemics (15), the probability distribution of the 
recovery time has clearly distinct ranges for individual with mild or acute infection. Choosing a 
single state C has been done to keep the model as simple as possible, the trivial solution would 
have been with two distinct C states, for Mild and Acute individuals, with no advantage for our 
study. 
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Fig.  S2: Main settings for simulations.  
In simulations, it has been excluded the case of AI individuals directly moving to 
Recovered/Removed without being diagnosed and contained. Although that case certainly 
happened in current outbreaks, we have not found any reliable estimate of its prevalence and 
considered it as a minor event, with respect to the overall system dynamics. 
Specifications in text boxes represent the settings for the specific transitions. In some cases, they 
are indicated as a probability distribution over a time period (e.g., gamma(TII)), as lists of 
alternative values that have been tested (e.g., 0.01, 0.02, and 0.03 for the transmission probability 
of Susceptible individuals), or as complements (e.g., 1-R|MI/C|MI, meaning the corresponding 
list 0.0, 0.2, 0.5, 0.8). For simplicity, in some cases (i.e., for state S, and edges AI-C and C-R), 
the value has been omitted, being the probability of the complementary state transition, given by 
the only other outgoing edge of the origin node.  
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Table S1 
Model's compartments with description of characteristics and assumptions for simulations. 
 
Symbol Compartment Description 

S Susceptible The initial state for all individuals in the model except the 
ones seeding the epidemic. At each discrete time step, 
individuals interact through the contact network with directly 
connected peers and could become infected with a certain 
probability that depends on the number of infected peers and 
their infected state (II, MI, AI, or, but only for some 
simulations, C). 

II Incubating Infected Incubating infected are Susceptible individuals that become 
infected after the contact with an infected peer. The reason 
for this state in our model is because there is the possibility 
that infectivity, although reduced with respect to the 
symptomatic state, develops in this phase, according to the 
current medical literature. This is the state assigned to the 
initial seeding nodes in simulations. Individuals stay in this 
state according to a probability distribution within a time 
range (in time steps) derived from the literature. 

MI Mild Infected Infected persons showing no symptoms or mild symptoms 
easily interpreted as common cold or flu, or due to the 
mildness of the condition, reluctant to self-quarantine and 
look for medical assistance. Persons in this state are assumed 
to have a reduced biological infectivity with respect to those 
that develop full acute symptoms. On the other hand, we 
assume no restriction to the contact network, being them free 
to entertain all usual social relations or interact with 
cohabitants (e.g., relatives, roommates). MI individuals 
could at some point in time be diagnosed and contained or 
remain undiagnosed until spontaneous recovery. The 
probability to move to state C is one of the unknown of the 
model and has been simulated by considering different 
possibilities. Instead, the probability to move to state R 
depends on the probability distribution within a time range 
derived from the literature. 

AI Acute Infected Infected persons that developed full symptoms and are 
infectious with the full viral dose. Susceptible individuals 
have the highest probability to become infected when in 
contact with AI individuals. On the other hand, we assume 
that all AIs receive a diagnose within a given time frame, and 
as a consequence move to state C. The possibility that AI 
individuals are not diagnosed and thus contained exists in 
practice, of course, and the state diagram shows the 
corresponding probability. However, in this work, we have 
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considered that case as not relevant for the outcome and 
discarded.   

C Contained Infected person that have been diagnosed and then isolated. 
Our working assumption is that contained individuals have 
all their social ties removed from the contact network. This is 
not true in reality, because, for example, hospital propagation 
especially to medical personnel is certainly not negligible 
and in some case the seed of new outbreaks. However, we 
have considered the case of no propagation from individuals 
in state C as the reference case for simulations. This 
simplification certainly results in an underestimation of new 
infections, either MI or AI. We have run some simulations 
with different probabilities of infection also from C 
individuals to qualitatively evaluate the possible impact, 
although at present clear estimates of the prevalence of 
infections developed from isolated individuals seems still 
unconfirmed.    
We have also run simulations starting with the simplified 
assumption that no MI becomes contained. This represents 
the worst-case scenario for our analysis, the one with the 
largest number of undiagnosed and not contained infected 
persons. Beside this case, we have produced simulations with 
increasing rates of MIs that become detected and thus 
contained, for example as a consequence of screening 
campaigns for the asymptomatic population introduced with 
the emergency response policy. 

R Recovered/Removed This is the final state of the transition diagram reached by all 
individuals in our model and depends on the probability 
distribution within a time range, different in case of MI and 
AI.  
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Table S1 
State transition probabilities and values used in simulations. 
 
Probability Description Values 
P(S) p. to remain susceptible. It is fitted 

empirically according to the scenario 
considered, 10/30/50 of total infected 
resulting at the end of the epidemic with 
respect to the whole population. P(S) = 1- 
P(S,II) 

0.99 for the 10% scenario  
0.98 for the 30% scenario 
0.97 for the 50% scenario 

P(S,II) p. to get infected (infection rate). 
Empirically evaluated, same as P(S).  
P(S,II) = 1- P(S) 

0.01 for the 10% scenario  
0.02 for the 30% scenario 
0.03 for the 50% scenario 

P(II) p. to remain in incubation state. The 
probability is defined as the probability 
distribution over the time range TII 

For each node, gamma distribution, 
gamma(TII), with TII in [2,14] with 
k = 3 and mean = 8 

P(II,MI) p. to move from the incubation state II to 
the Mild Infected state. This is the main 
unknown of this model  

Simulations have been run with 
different frequency values for 
MI:AI=(0.8:0.2, 0.6:0.4, 0.4:0.6, 
0.2:0.8) 

P(II,AI) p. to move from the incubation state II to 
the Acute Infected state (mostly 
undiagnosed).  

Related to P(II,MI), simulations 
have been run with frequency 
values corresponding  to  
1-MI/AI 

P(MI) p. to remain in state Mild Infected. The 
probability is defined as the probability 
distribution over the time range TMI  

For each node, normal distribution, 
norm(TMI), with TMI in [2,7] 

P(MI,C) p. to move from Mild Infected to 
Contained. It measures the odds of an MI 
individual to be diagnosed or tested as 
infected and thus isolated. Our 
assumption is that the standard case for 
MI is not to be diagnosed/tested 

Our working assumption and worst 
case scenario is to consider 
P(MI,C)=0, meaning no MI is 
isolated. We also run some 
simulations to test the effect of 
diagnosing and containing a certain 
proportion of MI (i.e., 20, 50, and 
80% with respect to the MI 
undiagnosed, are the proportions 
tested). These are hypothetical 
values, we are not aware of reliable 
estimates. 

P(MI,R) p. to recover for a MI individual. The 
probability depends to P(MI) and 
P(MI,C)  

P(MI,R)=1-(P(MI)+P(MI,C)) 
For each node, when the number of 
time steps calculated for P(MI) 
expires, the state changes from MI 
to R (under the assumption of 
P(MI,C)=0) 
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P(AI) p. to remain in state Acute Infected before 
being Contained. The probability is 
defined as the probability distribution 
over the time range TAI 

For each node, gamma distribution, 
gamma(TAI), with TAI in [2,7], with 
k = 3 and mean = 3 

P(AI,C) p. to move from Acute Infected state to 
Contained. It depends on the value of 
P(AI) 

P(AI,C)=1-P(AI) 
For each node, when the number of 
time steps calculated for P(AI) 
expires, the state changes from AI 
to C 

P(AI,R) p. to move spontaneously recover from 
acute infection without being diagnosed. 
We assume this case as non-existent 

P(AI,R)=0 

P(C) p. to remain in Contained state. The 
evaluation of this probability is different 
for nodes arrived in state C from MI or 
from AI, being the time intervals 
completely distinct for the two cases. The 
probability then is defined as the 
probability distribution over two time 
ranges TC|MI and TC|AI 

For each node, normal distribution, 
norm(TC|MI), with TC|MI in [2,5] if 
the node was previously in state MI, 
or norm(TC|AI), with TC|AI in [14,30] 
if the node was previously in state 
AI. 

P(C|MI,R) p. to recover from contained state being 
mild infected. It depends on the value of 
P(C) evaluated with respect to TC|MI 

P(C|MI,R)=1-P(C) for TC|MI 
For each node, when the number of 
time steps calculated for P(C) 
expires, the state changes from C to 
R 

P(C|AI,R) p. to recover (or decease) from contained 
state being acute infected. It depends on 
the value of P(C) evaluated with respect 
to TC|AI 

P(C|AI,R)=1-P(C) for TC|AI 
For each node, when the number of 
time steps calculated for P(C) 
expires, the state changes from C to 
R 

P(R) p. to stay in Recovered/Removed state. 
By design of our model, this is the final, 
fixed state. For simplicity, it was not 
shown in the state transition diagram  

P(R)=1.0 
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Table S3.  
Parameters used in simulations. 

Parameter Value 

Network size 1000 

Seed nodes 5 

Timesteps 150 

Probability of transmission  
(full viral dose)  

0.01 (10% S.) 
0.02 (30% S.) 
0.03 (50% S.) 
0.05 (70% S.) 

Reduction factor (reduced viral dose) 𝜇 =	0.5 

Latency time (timesteps) mean=8   [2,14] 

Infectious time - Acute Infected mean=3   [2,7] 

Infectious time - Mild Infected [2,7] 

Isolation period - Acute Infected [14,30] 

Isolation period - Mild Infected [2,5] 

Acute Infected : Mild Infected (0.2, 0.4, 0.6, 0.8) 

Mild Infected Contained : Not Contained (0.0, 0.2, 0.5, 0.8) 

 
 


