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0.1 Model Purpose

The Modern Wage Dynamics Model is a generative model of coupled economic production and

allocation systems. Each simulation describes a series of interactions between a single aggregate firm

and a set of households through both labour and goods markets. The firm produces a representative

consumption good using labour provided by the households, who in turn purchase these goods as

desired using wages earned, thus the coupling. The model employs a variant of efficiency wage

theory where worker effort is a function of the wage they receive, and production is based on

effective effort rather than worker hours. The households have independent and dynamic effort-wage

response functions. The firm has incomplete information with regards to the aggregate households’

effort response function and demand, and attempts to learn these relationships over time.

Each model iteration the firm decides wage, price and labour hours requested. Given price and

wage, households decide both effort and hours worked based on their effort response functions and

a utility function for leisure and consumption. A labour market construct chooses the minimum

of hours required and aggregate hours supplied, and aggregates the effort provided. The firm then

uses these inputs to produce goods. Given the hours actually worked, the households decide actual

consumption and a market chooses the minimum of goods supplied and aggregate demand. The

firm uses information gained through observing market transactions about effort and consumption

demand to refine their conceptions of the population’s effort-wage response and demand.

The purpose of this model is to explore the general behaviour of an economy with coupled

production and allocation systems, as well as to explore the effects of various policies on wage and

production, such as minimum wage, tax credits, unemployment benefits, and universal income.

0.2 Model Overview

The model consists of a single aggregate firm representing all economic production and multiple

households. The firm produces a single aggregate good, called sugar. The households provide wage

labour to the firm and consume sugar. The model begins with the firm choosing the wage, ω, price

of sugar, p, and hours requested, HD. Given ω, each household choses a level of effort, ei, and

the hours provided, Hi, according to preferences for leisure and consumption. A labour market

determines HM as the lesser of HD and HS . Given HM and the various ei levels, the firm supplies a
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Figure 1: Modern Wage Dynamics Model Flow

quantity of sugar to the households, SS , based on its production function and effective effort. Each

household then decides how much sugar it desires according to its budget, Si. The market then

aggregates the household demand and determines the quantity of sugar sold as the lesser of SS and

SD. Finally, firm updates its expectations of effective effort and demand, and makes modifications

to price and wage as appropriate. Figure 1 shows a schematic overview of the model process.

0.2.1 The Firm’s Production Function and Hours Decision

The firm starts with an initial price and wage value, as well as an expectation of sugar demand

from the current model state. Firm production is modeled as a variant of the Solow production

function,

Y = A(eH)γ (1)
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where A combines the total factor productivity coefficient as well as the capital contribution. Thus,

Y is solely a function of labour, or more specifically in our case, of total effective effort, N = eH,

the proportion of labour hours dedicated to effort. The firm has an expectation of the aggregate

household effort response curve, the relationship between effort and wage, modeled in our case by

a neural network η such that ê = η(ω). The firm also has an expectation of aggregate household

demand, and in its role as representing all economic production will attempt to meet that demand.

Thus, the hours requested by the firm are

HD =
1

ê

(
SD
A

) 1
γ

. (2)

For self production, γ = 1 and e = 1, max hours worked at max effort. Our model assumes that

when households produce for the firm rather than itself, that effort will depend on the wage. Thus

the model requires gamma to be increasing returns to scale, which is suitable as the division of

labour claims higher labour productivity than each household producing for itself.

0.2.2 The Households’ Effort and Hours Decision

Each household is ascribed an individual effort response curve relating the wage, ω, to effort, ei,

given a particular disutility of effort, di. Based on this response curve, a household will maximize

its utility for labour by minimizing its effort. Thus the household effort response curve is

ei = 1 −
(

di
ω + di

) 1
2

(3)

and e is a value between 0 and 1 representing the percentage of a work hour that is effortful. Each

household also decides the quantity of work hours it will provide to the firm at this effort. These

hours are determined based on a Cobb-Douglas utility function for consumption and leisure. Since

sugar is the aggregate consumption good in the model, the quantity of household consumption is

not completely arbitrary as the household requires a necessary base level of consumption to survive,

SN . Therefore, each household will work a number of hours regardless of the utility from those

hours, HN .1

Given and maximum number of available hours per household, Hmax, leisure can be described

as (Hmax −HN −HO) were HO are discretionary hours, and the household utility function is

U(HO, SO) = (Hmax −HN −HO)α(SO)β (4)

where α+ β = 1 and SO represents discretionary sugar consumption. The total household budget,

B, is the wage income, ω(HN +HO) plus any positive monetary holdings, min(0,m).2

1These hours can be described as tribute hours, a la Graeber, since they are not available for the free use of the
worker, but owed to someone else in order to obtain material goods for survival.

2Given that households require a base level of consumption, SN , households may experience negative holdings.
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Tribute hours, HN , are calculated as

HN = max

(
0,

pSN −m

ω

)
(5)

and we end up with two different cases, one where tribute hours are 0 and one where they are greater

than 0. If HN > 0 the household doesn’t have enough non-wage funds to cover SN , and anything

they do have goes toward SN and reducing HN . Therefore discretionary consumption is based

on the wage earned from discretionary hours alone. If HN = 0, then the household has enough

non-wage funds to cover necessary consumption, and can apply the remainder toward discretionary

consumption. In the first case,

U(HO) = (Hmax −HN −HO)α
(
ωHO

p

)β
(6)

and maximising utility yields

HO = β(Hmax −HN ) (7)

Total hours supplied by the household will be HO +HN , or

H = βHmax + αHN (8)

Given that

HN =
pSN −m

ω
, (9)

we find

H = βHmax +
α

ω
(pSN −m) for HN > 0. (10)

Note that since pSN −m is positive, as ω increases H decreases, and as ω decreases H increases.

In the second case, HN = 0, there will be a remainder of the non-wage funds that can be applied

toward discretionary consumption, such that

U(HO) = (Hmax −HO)α
(
ωHO

p
+
m

p
− SN

)β
. (11)

Utility maximising yields

HO = βHmax −
α

ω
(m− pSN ) . (12)

Since HN = 0,

H = βHmax −
α

ω
(m− pSN ) for HN = 0. (13)

Note that since m − pSN is positive, H increases and decreases with ω, which differs from the

HN > 0 case. Thus we have two different hour response regimes to wage.
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0.2.3 Labour is Sold Through the Market

The market aggregates the hours offered by the households into HS , as

HS =
n∑

i

Hi

and completes the labor market exchange such that HM is the lesser of HD and HS . This market

also determines hours worked per household, HW , and aggregate effective effort, N .

HW =





H for HS ≤ HD,

HD

HS
H for HS > HD

(14)

such that in the case of labour supply greater than labour demand, each household provides a

proportional amount of labour to meet demand. Aggregate effective effort is then

N =
n∑

i

eiHW,i. (15)

0.2.4 The Firm Produces Sugar

The quantity of sugar produced, SS , is given by the production function of Equation 1 using for

eH the N found by Equation 15 above.

0.2.5 The Households Plan Consumption

The households will buy the sugar they can afford above the necessary quantity, SN , so

Si = max

(
SN ,

1

p
(ωHi + τi + min(0,mi))

)
(16)

and the aggregate demand is

SD =
n∑

i

Si. (17)

0.2.6 Sugar is Sold Through the Market

The market chooses the lesser of SS and SD as the quantity of sugar exchanged. In the case of

SS < SD, the sugar supplied by the firm is divided proportionately between the households and

notated as SC , sugar consumed.

SC =





S for SD ≤ SS ,

SS
SD

S for SD > SS .
(18)
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Any unspent wages are saved for future consumption and added to mi, and any unsold sugar is

stored as inventory, I, which is unused in future steps. Households will incur debt if necessary in

order to purchase SN , which is represented by negative m values, though this debt does not affect

future consumption.

0.2.7 The Firm Updates Expectations

The firm adjusts its neural net expectations of the wage and effort relationship by including an

additional learning step given information it receives through the market interactions with the

households.

The observed effort for the given wage is observed by

eobs =
S

1
γ

S

HM
(19)

and the tuple (ω, e) is added to the training set for η(ω) and the neural net is refit with the updated

information. The firm has a memory parameter, µ, which controls the number of observations

maintained in the training set. After each update, the first element in the set is dropped to make

room for the next observation.

The sugar demand at the offered price is observed as SD, and the household updates the values

of p or ω in order to match supply to demand. The heuristics used by the firm to modify p and ω

values are based on both the observed sugar demand and the profit from the last market exchange,

π = pSM − ωHM . (20)

In its attempt to balance sugar supply and demand, the firm adjusts wage or price by a given

percentage, pct. If SS < SD and π > 0, the firm will increase wage by pct to entice more effort and

hours. If π < 0, the firm will raise price to lower demand. If SS > SD and π > 0, the firm will

decrease price to increase demand, and if π < 0 the firm will decrease wage to reduce hours.

The neural net model and the logic updating price and wage values provide the firm with

unique heuristics for incorporating observed aggregate responses from the households into useful

relationships for its own decision making.

0.3 Model Initialisation

At the start of the simulations, households, η and SD are initialised. Initial values for wage and

price are specified as input parameters.

The fixed unique household parameters α, β and d are found by random draws of appropriate

bounded distributions at the start of the model run.

The neural network expectation model for the firm is initialised by selecting at random a single

household to provide values for e given a sample range of wages. From these values we construct
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the initial training set for η(ω). η is then trained starting with random weights. After initialisation,

µ elements of the training set are retained for future updates.

Sugar demand is initalised by using the same randomly selected a household and calculat-

ing household demand with initial wage and price, then multiplying this value by the number of

households.

0.4 Entities, State Variables and Scale

The model entities are a single firm, n households, and a market through which the firm and the

households interact. All household values are stored as vectors indexed by household number, which

allows for numerous opportunites to employ vectorised operations instead of iterating through all

households. Table 1 gives the models parameters that are set at the start of the simulation and

remain constant. Table 2 gives the model state values that update at varying times over the course

of the simulation.

Parameter Description Values

ωmax firm’s maximum wage for initialising η ∼ 100
µ firm’s memory length for updating η µ ≥ 3
A production function coefficient 3
γ firm’s production function exponent γ ≥ 1
pct percentage change for wage and price adjustments .1
Hmax maximum available household hours per step 400
SN amount of consumption necessary for household survival ∼ 26, 000
emin minimum household effort .2
dmax maximum disutility of effort 5
di disutility of effort for household i di > 1
αi exponent of leisure term for utility function for household i α = β − 1
βi exponent of consumption term for utility function for household i β = α− 1

Table 1: Modern Wage Dynamics Parameter Values.

0.5 Process Overview and Scheduling

Each model step represents a month time duration, and iterative operations are conducted in

consecutive household order. The market interactions are based on aggregate household outcomes,

and a single household outcome does not impact another household during any given operation,

though aggregate outcomes do affect all households over time.

We run the model by calling main.py, without any arguments. All parameters including output

directory and filenames are specified in the series params.py file. The main.py file also calls

initialisation functions.py, firm functions.py, household functions.py and

market function.py.

The process overview is:

main.py reads parameter sets from series params.py
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Variable Description

η neural network representing the expected effort response curve
ê firm’s expected aggregate household effort
ω wage set by the firm
p price of sugar set by the firm
HD quantity of hours demanded by the firm
π firm profit
I quantity of sugar in the firm’s inventory
Hi desired number of hours supplied by household i
HS aggregate number of hours supplied by the households
HM number of work hours exchanged in the labour market
HW,i number of hours worked by the household i
N aggregate effective labour provided by the households
SS quantity of sugar the firm produces according to available effective labour
ιi wage income for household i
Si quantity of sugar demanded by household i
SM quantity of sugar exchanged in the sugar market
SC,i quantity of sugar consumed by household i
mi monetary holdings for household i
Ui utility for household i

Table 2: Modern Wage Dynamics State Variables.

for each distinct parameter set:

for each repetition of parameter set:

assign parameter values

initialise households

initialise η

initialise SD

save initial values

for each step:

firm decides hours demanded

households decide effort and hours supplied

market conducts labour exchange

firm produces sugar with market labour

households determine sugar demand

market conducts sugar exchange

firm calculates profit

households calculate utility

households update ledgers

firm updates inventory

firm updates η

firm adjusts wage or price values
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save step values

write dataframes to files

0.6 Considerations and Explorations

The model can currently be run with multiple parameter values and assumptions.

1. The model can be run without necessary consumption, in which case SN = 0.

2. The model is currently coded to allow for numerous policy experiments, such as

(a) minimum wage, ωmin,

(b) unemployment benefits, υ, which results in households having a reserve wage, ωr,

(c) earned income tax credits (EITC), τ ,

(d) and universal income supplement, σ.

These policy experiment slightly modify the equations presented earlier. We add to our

representation of a household’s employment rent not only wage and unemployment benefits,

but also any earned income tax credits (EITC) it receives to supplement its income. The

household employment rent is therefore

r = ω − υ + τ, (21)

where υ is the standard unemployment compensation the household expects if it loses em-

ployment, and τ is the earned income credit. The household’s effort response curve is now

ei =





1 −
(

di
ω − υ + τi + di

) 1
2

for ω > ωr,i

0 for ω ≤ ωr,i

(22)

where

ωr =
2υ

Hmax
. (23)

Unemployment benefits are modeled as a constant quantity,3 but τ is modeled as a tripartite

function with an increasing, constant and decreasing range of supplementary income, shown

in Figure 2.4 All policy parameters need to be defined in per hour terms, so unemployment

benefits, universal income supplement and EITC benefits need to be converted. We do this by

dividing the empirical quantities by half of the household’s maximum work hours to obtain a

metric comparable to the wage the worker would obtain for those same hours. Thus household

3Median weekly unemployment benefits for 2019 for the US was $450, or $1800 per month. *Need source.
4From https://crsreports.congress.gov/product/pdf/R/R43805/11, we estimate annual 2020 EITC for a married

household with two children as $0 - $15k of income receives increasing supplement from $0 to $6k, then constant
supplement of $6k through $30k, then dropping to $0 by $55k.
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Figure 2: Earned income tax credit, τ , is modeled as a tripartite function with param-
eters c1, c2, c3 and c4.

EITC is represented in terms of parameters c1, c2, c3 and c4 and household income ιi as

τi =





c1
c2
ιi for 0 < ιi < c2,

c1 for c2 ≤ ιi ≤ c3,

− c1
c4 − c3

ιi +
c1c4
c4 − c3

for c3 < ιi < c4

0 for ιi ≥ c4.

(24)

The calculation of tribute hours is likewise modified to include τ and σ in the budget,

HN = max

(
0,

pSN − (m+ τ + σ)

ω

)
, (25)

as well as household hours supplied,

H =




βHmax +

α

ω
(pSN − (m+ τ + σ)) for HN > 0,

βHmax −
α

ω
(m+ τ + σ − pSN ) for HN = 0,

(26)

and household sugar demanded,

Si =





max

(
SN ,

1

p
(ωHi + τi +mi)

)
for Hi > 0,

max

(
SN ,

1

p
(υ +mi)

)
for Hi = 0.

(27)

Tables 3 and 4 show additional parameters and state variables for policy implementations.

3. The model is very sensitive to production function parameters, A and γ. The parameter

value for A is derived from making it possible that household could self-produce SN with
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Parameter Description Values

ωmin firm’s minimum wage 7
υ monthly unemployment benefit ∼ 500
EITC flag for implementation of EITC policy (0, 1)
c1 parameter one of EITC function 6000
c2 parameter two of EITC function 15,000
c3 parameters three of EITC function 30,000
c4 parameters four of EITC function 55,000
σ universal income supplement 1200

Table 3: Policy Parameter Values.

Variable Description

τi amount of earned income tax credit for household i
ωr,i reservation wage for household i

Table 4: Policy State Variables.

max hours, full effort and constant returns to scale, such that

A =
SN
Hmax

. (28)

The model value for γ needs to be large enough that multiple households working tribute

hours can produce SN for all households, or

γ ≥
ln
(
nSN
A

)

ln(HN )
. (29)

How does the model behaviour change with A, γ and n? What meaning could these changes

have? Is it possible to quantify these relationships formulaically?

4. How does the model behavoiur change if the firm uses existing inventory to meet demand,

thus decreasing production and hours demanded if I > 0?

There are also a variety of model modifications and extensions that would be of value to explore.

1. The model can be run without efficiency wages with minor modifications to restrict N = HM

or e and ê = 1.

2. The single representative firm could have a different goal other than matching sugar supply

to demand, such as employing all labour hours supplied, or maximising profit.

3. The firm’s expectation of household effort is modeled as a neural network, η, but its ex-

pectation of demand given price and wage is simply the last observed value. We could also

implemented the firm’s demand expectation as a neural net, but with two input parameters,

such that ρ(p, ω) = ŜD.
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4. The US is understood to have a ‘dual economy,’ where there are two distinct classes of wages:

one high and with high effort and high returns to labour, and one low with low effort and

low labour returns. This could implemented perhaps by redefining the productivity function

such as

Y = Ah(ehHh)γh +Al(elHl)
γl (30)

so where γl < γh, Al < Ah, and effort response curve e(ω)h lies above e(ω)l.

0.7 Inputs and Outputs

The model reads simulation parameter values from the series params.py and sends simulation

results to a designated .csv file. Input parameters are described in Table 5, and some parameters

accept multiple values to allow for numerous parameter sets within the same series.

Parameter Description value

directory name of output file directory single
series name filename for series results single
verbose true or false, whether the model prints variables each step single
seed rng seed for replicable results single
t max the number of time steps the model will run single
omega max firm’s maximum wage for initialising η single
H max maximum available household hours per step single
mu firm’s memory length for updating η single
pct percentage change for wage and price adjustments single
e min minimum household effort single
c1 parameter one of the earned income tax credit function single
c2 parameter two of the earned income tax credit function single
c3 parameter three of the earned income tax credit function single
c4 parameter four of the earned income tax credit function single
n number of households multi
omega 0 initial wage value multi
A value of production function coefficient multi
gamma value of production function exponent multi
EITC flag for implementation of EITC policy multi
upsilon unemployment benefit multi
omega min minimum wage multi
sigma universal income supplement multi
S N required household consumption in units of sugar multi
p 0 initial price value multi
d max maximum household disutility for effort multi

Table 5: Input parameters specified in the series params.py file.

For each time step the model saves the following simulation parameter and variable values

to a dataframe: set, run, step, n, omega max, H max, A, gamma, mu, pct, e min, EITC, upsilon,

omega min, sigma, S N, d max, omega 0, p 0, I, pi, total pi, omega, p, e hat, H D, S S, S P,
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perceived effort, household, d, omega r, alpha, beta, e, H N, H, H W, m, S, S C, income, tau,

U, expenditure, N, H S, H M, S D, S M. The variable set is the specific combination of parameter

values, and run is the iteration of those values. The model also saves the state of η at each time

step described by: set, run, step, omega, effort.

0.8 More on the Neural Networks

We model the firm’s expectation of effort as a neural network, an unspecified non-linear model that

is trained with known (x, y) tuples, and once trained acts as a black box predictor of y given x,

illustrated in Figure 3.

x ynn

Figure 3: A neural network serves as a black box function, predicting y from a given x.

Inside the black box are a series of weights (W ), biases (b) and activation functions. Each layer

(A) can have numerous nodes. Figure 4 illustrates a very simple regression neural network with

a single hidden layer with two nodes, and with sigmoid and identity activation functions. The

sigmoid activation function incorporates an element of non-linearity which allows for very flexible

regression training.
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<latexit sha1_base64="Zg5+5Ub0CGCtRJAQafpEm4QCLc4=">AAACInicbZDLSsNAFIYn9VbjLerSzWApVJCSlIq6K7pxWcFeoI1hMp20QycXZiZKCXkWN76KGxeKuhJ8GKdpFrb1h4GP/5zDmfO7EaNCmua3VlhZXVvfKG7qW9s7u3vG/kFbhDHHpIVDFvKuiwRhNCAtSSUj3YgT5LuMdNzx9bTeeSBc0DC4k5OI2D4aBtSjGEllOcZlGd0nFfMkdUw9Q2serRnWMvcxNxPz1Eodo2RWzUxwGawcSiBX0zE++4MQxz4JJGZIiJ5lRtJOEJcUM5Lq/ViQCOExGpKewgD5RNhJdmIKy8oZQC/k6gUSZu7fiQT5Qkx8V3X6SI7EYm1q/lfrxdK7sBMaRLEkAZ4t8mIGZQinecEB5QRLNlGAMKfqrxCPEEdYqlR1FYK1ePIytGtVq149u62XGld5HEVwBI5BBVjgHDTADWiCFsDgCbyAN/CuPWuv2of2NWstaPnMIZiT9vML4FWe/Q==</latexit>

w
(2)
0,0

<latexit sha1_base64="9cQh/wJibOSQa9CDlVCGghxde/g=">AAACInicbZDLSsNAFIYn9VbjLerSTbAUKkiZlIq6K7pxWcFeoI1hMp20QycXZiZKCXkWN76KGxeKuhJ8GKdpFrb1h4GP/5zDmfO7EaNCQvitFVZW19Y3ipv61vbO7p6xf9AWYcwxaeGQhbzrIkEYDUhLUslIN+IE+S4jHXd8Pa13HggXNAzu5CQito+GAfUoRlJZjnFZRvdJBZ6kDtQztObRmmEtcx9zSuApTB2jBKswk7kMVg4lkKvpGJ/9QYhjnwQSMyREz4KRtBPEJcWMpHo/FiRCeIyGpKcwQD4RdpKdmJpl5QxML+TqBdLM3L8TCfKFmPiu6vSRHInF2tT8r9aLpXdhJzSIYkkCPFvkxcyUoTnNyxxQTrBkEwUIc6r+auIR4ghLlaquQrAWT16Gdq1q1atnt/VS4yqPowiOwDGoAAucgwa4AU3QAhg8gRfwBt61Z+1V+9C+Zq0FLZ85BHPSfn4B4Fye/Q==</latexit>

w
(2)
1,0

<latexit sha1_base64="HIXD8aIH0UdqPxouxkgRWMzYMpE=">AAACInicbZDLSsNAFIYn9VbjLerSzWApVJCSlIq6K7pxWcFeoI1hMp20QycXZiZKCXkWN76KGxeKuhJ8GKdpFrb1h4GP/5zDmfO7EaNCmua3VlhZXVvfKG7qW9s7u3vG/kFbhDHHpIVDFvKuiwRhNCAtSSUj3YgT5LuMdNzx9bTeeSBc0DC4k5OI2D4aBtSjGEllOcZlGd0nFfMkdUw9Q2serRnWMvcxp8Q6NVPHKJlVMxNcBiuHEsjVdIzP/iDEsU8CiRkSomeZkbQTxCXFjKR6PxYkQniMhqSnMEA+EXaSnZjCsnIG0Au5eoGEmft3IkG+EBPfVZ0+kiOxWJua/9V6sfQu7IQGUSxJgGeLvJhBGcJpXnBAOcGSTRQgzKn6K8QjxBGWKlVdhWAtnrwM7VrVqlfPbuulxlUeRxEcgWNQARY4Bw1wA5qgBTB4Ai/gDbxrz9qr9qF9zVoLWj5zCOak/fwC4eOe/g==</latexit>

A(0)

<latexit sha1_base64="DKOuXVjPiJMM6rebAwXLfPbZPh8=">AAACJ3icbZDLSgMxFIYz9VbrbdSlm2AptAhlRiq6UapuXFawF+jUkkkzbWjmQnJGKEPfxo2v4kZQEV36JqbtLLT1QODn+8/h5PxuJLgCy/oyMkvLK6tr2fXcxubW9o65u9dQYSwpq9NQhLLlEsUED1gdOAjWiiQjvitY0x1eT/zmA5OKh8EdjCLW8Uk/4B6nBDTqmheFy/ukaJfG+Bw7ivd94gjmQbE5oxPT0uYRdmfAkbw/gFIuNbpm3ipb08KLwk5FHqVV65qvTi+ksc8CoIIo1batCDoJkcCpYOOcEysWETokfdbWMiA+U51keucYFzTpYS+U+gWAp/T3REJ8pUa+qzt9AgM1703gf147Bu+sk/AgioEFdLbIiwWGEE9Cwz0uGQUx0oJQyfVfMR0QSSjoaHM6BHv+5EXROC7blfLJbSVfvUrjyKIDdIiKyEanqIpuUA3VEUWP6Bm9oXfjyXgxPozPWWvGSGf20Z8yvn8AqQqiJw==</latexit>

a
(2)
0

<latexit sha1_base64="3SwskPn5LXL03Z38lbeTalFaOog=">AAACIHicbZDLSsNAFIYn9VbjLerSTbAU6qYkpVKXRTcuK9gLtDFMppN26GQSZiZCCXkUN76KGxeK6E6fxkmahW39YeDjP+dw5vxeRImQlvWtlTY2t7Z3yrv63v7B4ZFxfNITYcwR7qKQhnzgQYEpYbgriaR4EHEMA4/ivje7yer9R8wFCdm9nEfYCeCEEZ8gKJXlGq0qfEhq1kXqWnqO9jLaekaNhekVZmKnrlGx6lYucx3sAiqgUMc1vkbjEMUBZhJRKMTQtiLpJJBLgihO9VEscATRDE7wUCGDARZOkh+YmlXljE0/5Ooxaebu34kEBkLMA091BlBOxWotM/+rDWPpXzkJYVEsMUOLRX5MTRmaWVrmmHCMJJ0rgIgT9VcTTSGHSKpMdRWCvXryOvQadbtZv7xrVtrXRRxlcAbOQQ3YoAXa4BZ0QBcg8ARewBt41561V+1D+1y0lrRi5hQsSfv5Bcu9nng=</latexit>

A(2) = �
⇣
W (2)A(1) + b(2)

⌘

<latexit sha1_base64="yAg4IfeyHXzrCNY9vGMqKcDygwo=">AAACHnicbZDLSgMxFIYz9VbrrerSTbAILUKZKS26EapuXFawF+iMJZNmpqGZC8kZoQx9Eje+ihsXigiu9G1MLwttPRD4+f5zODm/GwuuwDS/jczK6tr6RnYzt7W9s7uX3z9oqSiRlDVpJCLZcYligoesCRwE68SSkcAVrO0Oryd++4FJxaPwDkYxcwLih9zjlIBGvXzt8j4tVkpjfIFtxf2A2IJ5UGzP6MS0tHmK3RmwJfcHUOrlC2bZnBZeFtZcFNC8Gr38p92PaBKwEKggSnUtMwYnJRI4FWycsxPFYkKHxGddLUMSMOWk0/PG+ESTPvYiqV8IeEp/T6QkUGoUuLozIDBQi94E/ud1E/DOnZSHcQIspLNFXiIwRHiSFe5zySiIkRaESq7/iumASEJBJ5rTIViLJy+LVqVsVcu122qhfjWPI4uO0DEqIgudoTq6QQ3URBQ9omf0it6MJ+PFeDc+Zq0ZYz5ziP6U8fUDVSafig==</latexit>

A(1) = �
⇣
W (1)A(0) + b(1)

⌘

<latexit sha1_base64="xYmHH1AniQKDwL/xjtZj/bW+sFk=">AAACHnicbZDLSsNAFIYnXmu9VV26GSxCi1ASadGNUHXjsoK9QBPLZDpph04uzJwIJfRJ3PgqblwoIrjSt3HSZqGtBwZ+vv8czpzfjQRXYJrfxtLyyuraem4jv7m1vbNb2NtvqTCWlDVpKELZcYliggesCRwE60SSEd8VrO2OrlO//cCk4mFwB+OIOT4ZBNzjlIBGvULt8j4pWeUJvsC24gOf2IJ5UGrPaGqa2jzB7gzYkg+GUO4VimbFnBZeFFYmiiirRq/wafdDGvssACqIUl3LjMBJiAROBZvk7VixiNARGbCulgHxmXKS6XkTfKxJH3uh1C8APKW/JxLiKzX2Xd3pExiqeS+F/3ndGLxzJ+FBFAML6GyRFwsMIU6zwn0uGQUx1oJQyfVfMR0SSSjoRPM6BGv+5EXROq1Y1UrttlqsX2Vx5NAhOkIlZKEzVEc3qIGaiKJH9Ixe0ZvxZLwY78bHrHXJyGYO0J8yvn4ATrCfhg==</latexit>

Figure 4: Inside the black box: a basic neural network with an input layer (x), a single hidden
layer with two nodes, and an output layer (y). The first and second activation functions are the σ
function. This model contains six tunable parameters.

In general, the values of each of the nodes in layer n+ 1 are found using

A(n+1) = f (n+1)
(
W (n+1)an + b(n+1)

)
.

In the case of the single neural network shown in Figure 4,

W (1) =



w

(1)
0,0

w
(1)
0,1


 , and W (2) =

[
w

(2)
0,0 w

(2)
1,0

]
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Putting this all together,

A(1) = σ





w

(1)
0,0

w
(1)
0,1


 a(0)0 +



b(1)

b(1)




 =



σ(w

(1)
0,0a

(0)
0 + b(1))

σ(w
(1)
0,1a

(0)
0 + b(1))




and

A(2) = σ



[
w

(2)
0,0 w

(2)
1,0

]


σ(w

(1)
0,0a

(0)
0 + b(1))

σ(w
(1)
0,1a

(0)
0 + b(1))


+

[
b(2)
]



= σ
(
w

(2)
0,0 σ

(
w

(1)
0,0 a

(0)
0 + b(1)

)
+ w

(2)
1,0 σ

(
w

(1)
0,1 a

(0)
0 + b(1)

)
+ b(2)

)
.

The learning consists of updating values for the six parameters: w
(1)
0,0, w

(1)
0,1, w

(2)
0,0, w

(2)
1,0, b(1) and

b(2). In the specific instance of η(ω),

ê = η(ω) = σ
(
w

(2)
0,0 σ

(
w

(1)
0,0 ω + b(1)

)
+ w

(2)
1,0 σ

(
w

(1)
0,1 ω + b(1)

)
+ b(2)

)
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