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Abstract 

Communication processes occur in complex dynamic systems impacted by person attitudes and 

beliefs, environmental affordances, interpersonal interactions and other variables that all change 

over time. Many of the current approaches utilized by Communication researchers are unable to 

consider the full complexity of communication systems or the over time nature of our data. We 

apply agent-based modeling to the Reinforcing Spirals Model and the Spiral of Silence to better 

elucidate the complex and dynamic nature of this process. Our preliminary results illustrate how 

environmental affordances (i.e. social media), closeness of the system and probability of 

outspokenness may impact how attitudes change over time. Additional analyses are also 

proposed. 

  



Introduction/Background 

Communication processes that give rise to socially significant phenomena such as public 

opinion, social identities, lifestyle communities, and ideological polarization have been theorized 

to be complex dynamic processes in Spiral of Silence theory (SoS, Noelle-Neumann, 1979; 

Noelle-Neumann & Peterson, 2004) and in the Reinforcing Spirals Model (RSM; Slater, 2007; 

Slater, 2015). Such dynamic models are challenging to study methodologically (see Slater, 

2007). Classic longitudinal approaches may not have appropriate time intervals, a long enough 

timeframe for effects to evolve, address contexts in which the processes are expected to unfold in 

ways that might be readily measurable or be able to cope with modeling relevant contingent 

variables as well as core processes. We utilize agent-based modeling (Namatane & Chen, 2016) 

to model and simulate the effects of RSM and SoS willingness to engage in and ability to reach 

consensus as an alternative approach. In time we will explore implications of these simulations 

for topics such as political polarization and growth of extremist ideologies. 

 Complex agent-based social network models are developed incrementally and require 

researchers to elucidate underlying assumptions of important communication theories and 

models and also the impact particular mental states or choices would have on individuals 

distributed throughout a population. Therefore, ABM also provides an important exercise in 

theory development by forcing consideration of each implicit and explicit assumption and allows 

us to visualize the impact of that assumption on a complex dynamic system. We begin by 

simulating dynamics that are important in SoS and RSM using Netlogo (Wilenski 1999). 

Our model focuses on underlying processes that may work in political and other contexts. Our 

model is premised on the following assumptions: 

1) Communication processes are dynamic and longitudinal in nature. 

2) Individuals are impacted both by internal states and interactions with the environment. 



3) It is possible for a network experiencing RSM and SoS processes to reach an equilibrium 

state. 

4) RSM and SoS can be modeled using in face-to-face networks using small-world 

networks. We assume this because interpersonal networks often have small world 

properties. 

5) Individuals are able to recognize true opinion position of communication partners when 

these partners speak out their opinion. 

6) Individuals listen only to speaking partners with opinions not too far from theirs, i.e. 

inside a tolerance interval. 

7) Individuals update their opinions to the average value of listened opinions. 

 

ABM allows researchers to organically develop and test, additively, the impact of different 

processing and interaction patterns on a larger social network. In this phase of our work, we are 

simulating how opinion spaces may evolve into being relatively cohesive or fractured. SoS 

predicts cohesiveness of opinions (relative few and uniform groups of shared opinions); RSM 

predicts that opinion groups will tend to fractionalize (with some proportion tending to become 

relatively extreme). One factor, according to the RSM, are the effects of closed communication 

norms among more polarized or extreme identity groups. Another factor is diversity of 

opinions/beliefs in the opinion space: In a highly connected, social media driven world, the range 

of assertions, beliefs, and opinions is likely to be much wider than in the news environment of 

another generation (though agenda setting still occurs Feezell, 2018), in which gatekeeping and 

agenda setting limited the margin and diversity of individual agendas (McCombs & Shaw, 

1979). A third factor is reduced dependence on physical proximity given the affordances of 

social media in the contemporary environment. We also look at extent of the agents’ own 

opinion expression, given the importance of this concept in SoS and the greater facility for such 

expression offered in the social media environment. See Appendix 1 for a technical description 

of how we approached our modeling efforts, and Table 1 for a summary of model parameters. 

 

  



Results 
 The major results of our simulation experiments are summarized in Figure 1. The key 

finding regards the principal drivers of fragmentation in the opinion space. There are noticeable 

differences in fragmentation, or in models not reaching equilibrium, associated with each of our 

four factors. However, the model is dominated by one unmistakable finding: that fragmentation 

was universal across the simulations when communication norms were closed (little tolerance for 

divergent opinion) and when there was a wide range of opinions available in the opinion space. 

Effects of proximity and ability to express one’s own opinion were modest by comparison.  

Discussion 

 Though this model is incomplete, our result suggest that we can effectively use ABM to 

model l the complex dynamics of the RSM. Diversity of information impacts the simulation 

absent the influence of media gatekeepers. The importance of closed communication norms, an 

unwillingness to consider other viewpoints also has a significant effect, which has been less well 

discussed in the literature. Conversely, willingness to consider such viewpoints can have 

dramatic effects in reducing fragmentation. The impact of proximity and the ability to express 

one’s own opinions were considerably less powerful though not without impact. Overall, this is 

an important first step in describing the dynamics of RSM and Spiral of Silence. 

 Next, we will model effects of mass media, of Twitter-type influencers, of selectivity in 

media use, of the impact of emergent social identity threats and of distinguishing social media 

networks from more proximal interpersonal networks. Further, we will be completing analyses of 

network structure and comparing model fit statistics, provide a more complete understanding of 

how adding variables to the model impacts overall fit. 
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Table 1. Parameters used in the simulation experiment: 

Prameter name (description) Used values 

N (number of agent in simulation) 129, 257, 513 

Neis (number of neighbor connected via close links) 8, 32, 128 

Rewiring (probability that the link with close neighbor is substituted by the 

link with random agent regardless its proximity) 

0.05, 0.25 

Opinions (number of opinions defining dimensions of the opinion space) 1, 2, 16 

Updating (number of opinion dimensions updated at given step) 1, 8, 16 

Boundary (relative fraction of theoretically maximal distance in given opinion 

space defining whether the communication partners are in opinion space close 

enough and respective agent will use their opinions for updating its own) 

0.1, 0.2, 0.3 

Boundary-drawn (method how is individual value of boundary drawn for 

respective agent – Constant is default for HK, i.e. all agents have same value 

given by value of parameter ε, Uniform means that the overall average of 

values is equal to parameter ε, but individual values are drawn from uniformly 

random distribution) 

Constant, 

Uniform 

P (probability that respective agent will speak its opinion out in given step) 0.1, 0.5, 0.9, 1 

Note: For the final graph we compute variable ‘Relative neighborhood size’ according formula 

Neis / (N – 1) * 100. We also constructed variable ‘System type’ from variables ‘Boundary’ and 

‘Boundary-drawn’ followingly: conditions with ‘Constant’ method and ‘Boundary’ parameter 

0.1 and 0.2 and ‘Uniform’ method with ‘Boundary’ 0.1 we coin as a ‘Close system’, the resting 

three combinations we coin as ‘Open system’.  

  



Figure 1. Summary of simulation results. 

 

  



Appendix 1: Technical description of modeling approach 

We started our effort with the classical version of Hegselmann-Krause bounded confidence 

model of opinion dynamics (HK, 2002) and advance it in several ways. HK captures dynamics of 

reaching group consensus and supposes that: (1) all agents have one opinion on the continuous 

scale, (2) all agents always share their opinion with all other agents, (3) all agents have boundary 

given by their own opinion and +/- parameter ε, (4) parameter ε is same for all agents in 

simulation, (5) in each step of simulation all agents take into account opinions of all agents 

inside their boundary, then compute average of these inside-boundary opinions and take this 

average as their new opinion. this average as their new opinion. We use HK model since it 

captures opinion dynamics very smoothly, step-by-step, in high detail. It is also able trace 

gradual small individual changes smoothly over long course of time. Therefore we can explore 

SoS and RSM in a dynamic fashion. By manipulating margin of boundary the HK model allows 

us to explore the role of opened and closed system norms. Finally, as described bellow, HK 

model allows us easily add features and sub-processes that allows us explore RSM and SoS 

further. 

We propose four advancements regarding boundary universality, number of opinions, properties 

of network connecting agents and universality of speaking out the opinion. (1) We propose not to 

let agents interact in full network, i.e. each agent with all other agents, but we introduced small-

world network (Watts-Strogatz algorithm) and let agents interact only with their neighbors in this 

network. (2) We propose not one opinion as HK, but several opinions as dimensions of opinion 

space, where the boundary is Euclidean distance in this n-dimensional space. For comparability 

of results from simulations with different number of opinion dimensions we understand 

parameter ε as fraction of theoretically maximal distance in given n-dimensional space given by 

‘n’ opinions. (3) We propose a diversity of parameter ε. In some simulations we sharply follow 



HK model, but in some simulations we assign each agent its own value from randomly uniform 

distribution, but with same population average (i.e. when ε parameter for simulation is 0.3, then 

we draw for each agent its own value from interval <0, 0.6>). (4) We allow agents to not speak 

at every step of the simulation. We introduced parameter ‘p’ what is probability that the agent 

will speak its opinion at given step, then only agents that succeed in probability check speak their 

opinion at given step, but all agents update their opinions every step regardless their 

outspokenness.  

All these advancements demonstrate their value and effect in the experiment where we varied 

classical parameter (margin of boundary) and all new parameters (see Table 1). The results we 

measure at the level of whole simulation. We record whether the simulation reaches stable state 

in 5000 steps or not and in case of reaching a stable state we record whether in resulting state 

there is at least one group of 6+ agents with completely same position in opinion space or 

whether there are only many groups of size at maximum 5. We also test the impact of 

willingness to consider the attitude of others. We allow a uniform distribution (or a set value) of 

0.1, 0.2 and 0.3 around willingness to consider the opinion of others. This allows us to 

understand how different levels of openness to change impact closeness in an opinion space. 

Finally, we test the impact of a large or a small number of opinions mattering. This allows us to 

understand how the number of key issues (1 or 2 versus 16) in an opinion space impacts 

convergence in that space. 

 


