1 The virtual competitive market environment

The competitive market consists of several competitive members (retailers) who compete for customers. Each member of the market (retailer and customer) is simulated by an agent in Netlogo 5.1.0. The virtual competitive market G () consists of N retailer agents () and M customer agents (). The relationship between retailers and customers is modeled by an adjacency matrix E. is the element of the adjacency matrix E. The relationships among suppliers, retailers and customers are shown in Fig. 1, in which a solid arrow means , while a dotted arrow means . should satisfy the following constraint:

 (1)

Fig. 1 The virtual competitive market environment

1.1 The state of retailer agents

The state of is defined as., where is the price strategy that agent chooses at time t, is the action of used to adjust his price at time t, means the selling action of at time t, and is the action used to calculate costs, profit and inventory at time t. Fig. 2 shows the dynamic processes of retailer agents. If the inventory of agent at time t is , then (Chen et al., 2016); otherwise . When , the retailer agent orders Q perishable products from a supplier, otherwise it issues no orders. The order policy is the same for each retailer agent. can be calculated as follows:

 (2)

where is the accumulated profit of retailer agentat time t. . is calculated by equation (3) (Chen et al., 2016):

 (3)

 where are the order cost, unit purchasing cost and unit inventory cost, respectively. is calculated by , while is calculated by function (4):

 (4)
 where

 (5)
and

 (6)

[bookmark: _Hlk499388517]Equation (5) means that the retailer’s demand is determined by its inventory at the tth cycle. If the inventory is less than customer demand, only part of the overall customer demand will be satisfied (). Similar to, the value ofis determined by its inventory at the (t-1)th cycle. If the final inventory of retailer agent at the (t-1)th cycle is less than zero, an order will be generated, and the inventory at the tth cycle will equal Q. Equation (6) shows this type of relationship. The initial stocks of all retailers are assumed to be the same (Chang et al., 2016), as Equation (7) shows.

 (7)
[bookmark: _Hlk499390745][bookmark: _Hlk499390523]In these models, shortages are allowed but cannot be backlogged. Moreover, the value deterioration rate of perishable products should be considered. Different types of perishable products have different rates of deterioration based on their characteristics. Blackburn & Scudder (2009) and Chang et al. (2016) described the diminishing value of perishable products at time t in the form of an exponential function, as shown in Equation (8). They all assumed that perishable goods with the same criteria have similar qualities.

 (8)

 . When, perishable products are completely fresh; When , the perishable products are useless. If , set. V is the customer acceptable value coefficient.

Fig. 2 The dynamic processes in a competitive market

1.2 State of customer agents

The state of customer agents can be described as . The demand of each customer follows a normal distribution . It is assumed that each customer’s requirement is independent of the retailer’s pricing policy. is a 0-1variable, which is used to describe the retailer choosing the actions of customer agents. The actions of a retailer choosing for all customer agents at time t can be described via adjacency matrix E that is shown by Equation 9.

 (9)

[bookmark: _Hlk499389891][bookmark: _Hlk499389920]In matrix E, each column should satisfy the equation (1). represents customer preferences that are affected by age, regional culture and personal factors (such as life habits and personality) (Feldmann & Hamm, 2015; Chang et al., 2016). . is a set, in which each element is one preference type (). The proportion of each preference is defined as set (), and . Customer agents’ actions are shown in Fig. 2. In this paper, two kinds of preferences are considered. The first preference is the distance between customer and retailer. It can determine the convenience of consumption (Chang et al., 2016). Price is another customer preference. Compared to quality-oriented customers, this kind of customer is sensitive to price (Lee et al., 2014). Based on this, customers can be divided into three categories (See Tab. 1). For example, customer 2 prefers a closer retailer with a lower price. The retailer choosing processes can be described as follows:

[bookmark: _Hlk499391582] Step 1: For each k, calculate the value of customer agents (k means the kth preference of customers).

 Step 2: For each k, set ,.

 Step 3: Normalize the kth preference value of customer agent,(according to the synthesizing evaluation function of customer preferences). is the normalized kth preference value from customer agent to retailer agent ,.

 Step 4: For each retailer agent , calculate the total preference value of customer agent,. The customer agent chooses the retailer agent with the maximum .
Tab. 1 Customer categories with different preferences
	Customer categories
	Distance
	Price

	Customer 1
	Sensitive
	Insensitive

	Customer 2
	Insensitive
	Sensitive

	Customer 3
	Equal
	Equal

2 Q-learning algorithm for dynamic pricing policy

The dynamic pricing process of is the Markov decision process (MDP), given the transition function:

 (10)

[bookmark: _Hlk499389091] where is the state of agent at period t, is the action of agent in period t, and is the state of agent at period t+1. is the set of , and is an MDP where is the mapping function from to R that defines the reward gained by after each state transition. The action policy is the mapping from states to distribution over actions . is the probability distribution over an action. The problem is then to find based on . Fig. 3 shows the interaction of agent and environment in a Q-learning algorithm.

Fig. 3 The interaction of agent and environment in Q-learning

2.1 Q-learning reward function

The Q-learning algorithm can be viewed as a sampled, asynchronous method for estimating the optimal Q-function of the MDP (). The reward at period t is determined by customer demand, product price and retailer total cost. All customer demand can be described by the set. The customer decision matrix is. Then, the reward function can be calculated by:

 (11)
2.2 Q-learning action

The Q-function defines the expected sum of the discounted reward attained by executing action () in state (). The Q-function is updated by using the agent’s experience. The learning process is as described below.

 Agents observe the current state and select an action from . Boltzmann soft-max distribution is adopted to select the actions. For each price state, , where means a price decrease, means on operation occurs to the price and means a price increase. The probability calculation of action is similar that described by Li et al. (2011).

: The tendency of agents to explore unknown actions.

: The set of unexplored actions from the current state.

: The set of explored actions (at least once) from the current state.

The probability of can be calculated by:

 for (12)

 If one of the actions belongs to and the others belong to , then

 (13)

 If only one action belongs to , then

 (14)

 After selecting an action, the agent observes the state at period t+1 and receives a reward for the system. The corresponding Q value for state and action are updated according to the following formula:

 (15)

where (, learning rate) is the weight of the new information used in updating .(, discount rate) represents the importance of the value of future states in assessing the current state. At each simulation period, company agents update their Q-table using the Q-learning algorithm and learn the optimal cognitive map of how actions influence goals.

In order to prevent premature convergence, a random parameter is introduced to describe the step size () of price decreases or increases.

 (16)

[bookmark: _Hlk499392102]where and denote the upper and lower price limits of retailer agent , and . Equation (16) is a piecewise function, and its meaning can be described as follows:

 (1) If a retailer agent with the Q-learning algorithm chooses the action to decrease a price, the decreased step size should be a random value between [0,];

 (2) If a retailer agent with the Q-learning algorithm chooses the action to increase a price, the increased step size should be a random value between [0,];
 (3) In any other situation, the step size should be zero.
 In this model, retailer agents adjust their price values based on market judgments. Fig. 4 shows the basic graphical model of this paper. Dotted arrows indicate that an action is chosen depending on the state.

Fig. 4 Basic graphical model of this paper

[bookmark: _GoBack] A complete learning process occurs from the initial state to the terminal state. This is considered one cycle. The Q-learning process is shown in Tab.2. The Q-learning algorithm contains two steps: action determination based on the current Q-value and evaluation of a new action via the reward function. This cycle continues until the Q-value converges.

Tab. 2 Q-learning algorithm

Initialize arbitrarily, to the policy to be evaluated
Repeat (for each cycle)

 Initialize
 Repeat (for each step of cycle)

Choose from using policy derived from

Take action

Set

Observe ,

 Until is terminal

3 Other pricing policies
In real-market situations, there are many pricing policies. Three of these pricing policies are considered (Chang et al., 2016) and compared with the Q-learning algorithm proposed in this article.

 (1) Cost-plus pricing strategy. A product’s price is set based on unit cost (ordering cost, inventory cost and other factors) with a degree of profit. Once the price is calculated, it remains constant throughout the entire sales cycle. is calculated by equation (17), where is the target profit coefficient.

 (17)

 (2) Value-based pricing strategy. This pricing policy is suitable for customers with high product quality. The value of perishable product tends to decrease during the sales cycle, so the price becomes cheaper as time passes. The price calculation formula is shown in equation (18) and equation (19), where m and are the freshness impact factors, is the basic price for retailers and T is the theoretical sales cycle.

 (18)

 (19)

 (3) Inventory-sensitive pricing strategy. A larger inventory will typically cause lower prices, so that the retailer may sell products more quickly and reduce outdating. The price can be calculated by equation (20), where is current inventory, is the basic price for retailers, and mean the upper and lower prices respectively, and is the inventory-price coefficient. Standard inventory is equal to .

 (20)

oleObject3.bin

oleObject47.bin

image49.wmf
1

=

t

v

ij

FO

oleObject48.bin

image50.emf
Prcing strategy

choosing

agents

ÿ

attribute and

behavior setting

Retailer agents:

rules executing

Retailer agents:

adjust price

Retailer agent:

selling behavior

Retailer agents: inventory,

cost calculation

Retailer agents:

profit calculation

Turn next sale period

Customer agents: maximum

utility calculation according

to preference

Customer agents: a retailer

choosing with maximum utility

Customer agents: arriving

Supplier: perishable

products replenishment

t<T

safe

I I



t

v

j

b

1

) 1 (

t

v

j

b

1

) 2 (

t

v

j

b

1

)3(

t

v

j

b

1

) 4 (

Y

N

N

Y

Retailer agents

Customer agents

Microsoft_Visio_Drawing.vsdx
Prcing strategy choosing
agents’attribute and behavior setting
Retailer agents: rules executing
Retailer agents: adjust price
Retailer agent: selling behavior
Retailer agents: inventory, cost calculation
Retailer agents: profit calculation

Turn next sale period
Customer agents: maximum utility calculation according to preference
Customer agents: a retailer choosing with maximum utility
Customer agents: arriving
Supplier: perishable products replenishment
t<T

Y
N
N
Y
Retailer agents
Customer agents

image51.wmf
}

,

,

{

2

2

2

i

i

i

v

t

ij

v

t

v

e

D

S

d

=

oleObject49.bin

image52.wmf
)

,

(

~

2

2

s

u

N

D

i

v

oleObject50.bin

image53.wmf
t

ij

e

image4.wmf
t

ij

e

oleObject51.bin

image54.wmf
t

MN

t

N

M

t

N

t

N

t

N

M

t

N

M

t

N

t

N

t

M

t

M

t

t

t

M

t

M

t

t

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

E

)

1

(

2

1

)

1

(

)

1

)(

1

(

)

1

(

2

)

1

(

1

2

2

)

1

(

22

12

1

1

)

1

(

21

11

-

-

-

-

-

-

-

-

=

L

L

M

M

O

M

M

L

L

oleObject52.bin

image55.wmf
i

v

2

d

oleObject53.bin

image56.wmf
}

)

2

(

,

(1)

{

2

2

2

i

i

i

v

v

v

d

d

d

=

oleObject54.bin

image57.wmf
i

v

2

)

1

(

d

oleObject55.bin

image58.wmf
N

K

´

oleObject4.bin

oleObject56.bin

image59.wmf
}

,...,

,...,

,

,

,...,

,

{

)

1

(

2

2

2

1

2

1

2

1

1

1

2

KiN

iN

i

i

iN

i

i

v

s

s

s

s

s

s

s

i

=

d

oleObject57.bin

image60.wmf
i

v

2

)

2

(

d

oleObject58.bin

image61.wmf
}

,...

,

,

{

)

2

(

3

2

1

2

Ki

i

i

i

v

i

g

g

g

g

d

=

oleObject59.bin

image62.wmf
1

1

=

å

=

K

k

ki

g

oleObject60.bin

image63.wmf
kiN

ki

ki

s

s

s

,...,

,

2

1

image5.wmf
1

=

ij

e

oleObject61.bin

image64.wmf
i

v

2

d

oleObject62.bin

image65.wmf
}

,...,

,

,

{

3

2

1

kin

ki

ki

ki

ki

s

s

s

s

s

=

oleObject63.bin

image66.wmf
2

£

"

k

oleObject64.bin

oleObject65.bin

image67.wmf
}

min{

}

max{

}

min{

ki

ki

ki

kij

kij

s

s

s

s

y

-

-

=

oleObject66.bin

oleObject5.bin

image68.wmf
kij

y

oleObject67.bin

image69.wmf
i

v

2

oleObject68.bin

image70.wmf
j

v

1

oleObject69.bin

image71.wmf
]

1

,

0

[

Î

kij

y

oleObject70.bin

image72.wmf
j

v

1

oleObject71.bin

image6.wmf
0

=

ij

e

image73.wmf
'

d

oleObject72.bin

image74.wmf
i

v

2

oleObject73.bin

image75.wmf
å

=

´

=

2

1

'

)

k

kij

ki

y

g

d

（

oleObject74.bin

oleObject75.bin

oleObject76.bin

image76.wmf
j

v

X

1

oleObject77.bin

oleObject6.bin

image77.wmf
)

,

(

)

,

,

(

1

1

1

1

1

1

1

1

1

1

1

1

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

j

j

j

j

j

j

j

j

j

a

A

x

X

x

X

P

x

a

x

T

=

=

=

=

+

+

+

oleObject78.bin

image78.wmf
t

v

j

x

1

oleObject79.bin

image79.wmf
j

v

1

oleObject80.bin

image80.wmf
t

v

j

a

1

oleObject81.bin

image81.wmf
j

v

1

oleObject82.bin

image7.wmf
ij

e

image82.wmf
1

1

+

t

v

j

x

oleObject83.bin

image83.wmf
j

v

1

oleObject84.bin

image84.wmf
t

v

j

X

1

oleObject85.bin

image85.wmf
t

v

j

x

1

oleObject86.bin

image86.wmf
}

,

,

,

{

1

1

1

1

j

j

j

j

v

v

v

v

re

T

A

X

oleObject87.bin

oleObject7.bin

image87.wmf
j

v

r

1

oleObject88.bin

image88.wmf
j

j

v

v

A

X

1

1

´

oleObject89.bin

image89.wmf
j

v

1

oleObject90.bin

image90.wmf
p

oleObject91.bin

image91.wmf
))

(

:

1

1

j

j

v

v

A

X

P

®

p

（

oleObject92.bin

image8.wmf
M

i

e

N

j

ij

Î

"

=

å

=

,

1

1

image92.wmf
)

(

1

j

v

A

P

oleObject93.bin

oleObject94.bin

image93.wmf
j

v

r

1

oleObject95.bin

image94.emf
Agent Environment

Price state

t

v

j

x

1

Action

t

v

j

a

1

Reward

j

v

r

1

Q-table

update

Microsoft_Visio_Drawing1.vsdx
Agent
Environment

Price state
Action
Reward
Q-table update

image95.wmf
}

,

,

,

{X

1

1

1

1

j

j

j

j

v

v

v

v

R

T

A

oleObject96.bin

image96.wmf
t

v

j

r

1

oleObject8.bin

oleObject97.bin

image97.wmf
}

,...,

,

{

2

22

21

t

v

t

v

t

v

t

M

D

D

D

D

=

oleObject98.bin

image98.wmf
}

,...,

,

{

2

1

1

t

Mj

t

j

t

j

t

v

e

e

e

E

j

=

oleObject99.bin

image99.wmf
)

(

)

(

)

(

)

(

1

cos

1

,

1

1

1

1

cos

,

cos

1

,

1

,

cos

,

,

1

1

1

1

1

1

1

1

1

1

1

å

å

=

-

-

-

-

=

-

-

-

-

-

=

-

-

-

=

M

i

t

t

v

t

v

t

ij

t

v

M

i

t

t

v

t

v

t

ij

t

v

t

t

v

income

t

v

t

t

v

income

t

v

t

v

j

j

j

j

j

j

j

j

j

j

j

f

x

e

D

f

x

e

D

f

f

f

f

r

oleObject100.bin

image100.wmf
)

,

(

1

1

j

j

v

v

a

x

Q

oleObject101.bin

image101.wmf
j

v

a

1

image9.emf
Supplier

Retailer agent

11

v

Retailer agent

12

v

Retailer agent

13

v

Retailer agent

N

v

1

.

.

.

.

.

.

Customer agent

21

v

Customer agent

22

v

Customer agent

23

v

Customer agent

24

v

Customer agent

M

v

2

.

.

.

.

.

.

oleObject102.bin

image102.wmf
j

j

v

v

A

a

1

1

Î

oleObject103.bin

image103.wmf
j

v

x

1

oleObject104.bin

image104.wmf
X

x

j

v

Î

1

oleObject105.bin

image105.wmf
j

v

A

1

oleObject106.bin

image106.wmf
}

,

,

{

2

1

0

1

1

1

1

j

j

j

j

v

v

v

v

a

a

a

A

=

Microsoft_Visio_2003-2010_Drawing.vsd
�

�

Supplier

Retailer agent

Retailer agent

.
.
.
.
.
.

Retailer agent

Customer agent

Retailer agent

Customer agent

Customer agent

Customer agent

Customer agent

.
.
.
.
.
.

oleObject107.bin

image107.wmf
0

1

j

v

a

oleObject108.bin

image108.wmf
1

1

j

v

a

oleObject109.bin

image109.wmf
2

1

j

v

a

oleObject110.bin

image110.wmf
j

v

a

1

oleObject111.bin

image111.wmf
u

e

image10.wmf
j

v

1

oleObject112.bin

image112.wmf
u

A

oleObject113.bin

image113.wmf
w

A

oleObject114.bin

image114.wmf
)

(

1

1

j

j

v

m

v

x

a

P

oleObject115.bin

image115.wmf
å

=

n

a

x

Q

a

x

Q

v

m

v

n

j

v

m

j

v

j

j

e

e

x

a

P

)

,

(

)

,

(

1

1

1

1

)

(

oleObject116.bin

image116.wmf
w

m

v

A

a

j

Î

1

oleObject9.bin

oleObject117.bin

oleObject118.bin

oleObject119.bin

image117.wmf
ï

î

ï

í

ì

Î

Î

-

=

u

m

v

u

w

m

v

u

v

m

v

A

a

for

e

A

a

for

e

x

a

P

j

j

j

j

1

1

1

1

2

/

1

)

(

oleObject120.bin

oleObject121.bin

image118.wmf
ï

î

ï

í

ì

Î

Î

-

=

å

u

m

v

u

w

m

v

n

a

x

Q

a

x

Q

u

v

m

v

A

a

for

e

A

a

for

e

e

e

x

a

P

j

j

n

j

v

m

j

v

j

j

1

1

1

1

1

1

)

,

(

)

,

(

)

1

(

)

(

oleObject122.bin

image119.wmf
j

v

x

1

oleObject123.bin

image11.wmf
}

,

,

,

{

1

1

1

1

1

t

v

t

v

t

v

t

v

t

v

j

j

j

j

j

B

x

I

f

S

=

image120.wmf
j

v

a

1

oleObject124.bin

image121.wmf
))

'

,

'

(

max

)

,

(

(

)

,

(

)

1

(

)

,

(

1

1

1

1

1

1

1

1

1

'

j

j

j

v

j

j

j

j

j

j

v

v

a

v

v

v

v

v

v

a

x

Q

a

x

re

a

x

Q

a

x

Q

h

e

e

+

+

-

=

oleObject125.bin

image122.wmf
e

oleObject126.bin

image123.wmf
1

0

<

£

e

oleObject127.bin

image124.wmf
Q

oleObject128.bin

oleObject10.bin

image125.wmf
h

oleObject129.bin

image126.wmf
1

0

<

£

h

oleObject130.bin

image127.wmf
j

j

v

j

v

t

x

x

v

a

1

'

1

1

,

-

oleObject131.bin

image128.wmf
ï

ï

î

ï

ï

í

ì

=

-

=

=

-

-

=

-

2

,

1

0

,

'

,

1

1

1

1

1

1

1

1

1

1

1

1

1

),

(

,

0

),

(

j

j

j

j

j

j

j

j

j

j

j

v

j

v

j

v

v

v

upper

v

v

v

v

v

lower

v

v

t

x

x

v

a

a

if

x

x

random

a

a

if

a

a

if

x

x

random

a

oleObject132.bin

image129.wmf
lower

v

j

x

,

1

oleObject133.bin

image12.wmf
}

)

4

(

,

)

3

(

,

)

2

(

,

)

1

(

{

1

1

1

1

1

t

v

t

v

t

v

t

v

t

v

j

j

j

j

j

b

b

b

b

B

=

image130.wmf
upper

v

j

x

,

1

oleObject134.bin

image131.wmf
j

v

1

oleObject135.bin

image132.wmf
j

j

j

v

j

j

v

v

t

x

x

v

v

x

a

x

1

1

1

1

1

'

,

'

+

=

-

oleObject136.bin

image133.wmf
)

(

,

1

1

lower

v

v

j

j

x

x

-

oleObject137.bin

image134.wmf
)

(

1

1

,

j

j

v

upper

v

x

x

-

oleObject138.bin

oleObject11.bin

image135.emf
j

v

x

1

j

v

x

1

'

Compete with competitors

Do research

Q-learning algorithm

Calculating market benefit

Microsoft_Visio_2003-2010_Drawing1.vsd
�

�

�

Compete with competitors�

Do research�

Q-learning algorithm�

Calculating market benefit�

image136.wmf
)

,

(

1

1

j

j

v

v

a

x

Q

oleObject139.bin

image137.wmf
p

oleObject140.bin

image138.wmf
j

v

x

1

oleObject141.bin

image139.wmf
j

v

a

1

oleObject142.bin

image13.wmf
t

v

j

b

1

)

1

(

image140.wmf
j

v

x

1

oleObject143.bin

image141.wmf
p

oleObject144.bin

image142.wmf
Q

oleObject145.bin

oleObject146.bin

image143.wmf
x

x

v

v

v

j

j

j

a

x

x

-

+

=

'

,

1

1

1

'

oleObject147.bin

image144.wmf
j

v

r

1

oleObject12.bin

oleObject148.bin

image145.wmf
j

v

x

1

'

oleObject149.bin

image146.wmf
))

'

,

'

(

max

(

)

,

(

-

1

)

,

(

1

1

1

1

1

1

1

1

'

j

j

j

v

j

j

j

j

j

v

v

a

v

v

v

v

v

a

x

Q

r

a

x

Q

a

x

Q

h

e

e

+

+

=

）

（

oleObject150.bin

image147.wmf
j

j

v

v

x

x

1

1

'

¬

oleObject151.bin

image148.wmf
j

v

x

1

oleObject152.bin

image149.wmf
)

(

t

x

image14.wmf
j

v

1

oleObject153.bin

image150.wmf
l

oleObject154.bin

image151.wmf
)

1

(

)

/

(

3

2

1

11

l

+

´

+

+

=

C

C

Q

C

x

v

oleObject155.bin

image152.wmf
b

oleObject156.bin

image153.wmf
q

oleObject157.bin

image154.wmf
)

0

,

0

,

0

(

)

(

12

T

t

e

m

t

x

t

v

<

<

>

>

+

×

=

-

q

a

q

b

oleObject13.bin

oleObject158.bin

image155.wmf
å

=

=

M

i

v

i

D

QN

T

1

2

/

oleObject159.bin

image156.wmf
cu

I

oleObject160.bin

image157.wmf
13

x

oleObject161.bin

image158.wmf
min

x

oleObject162.bin

image159.wmf
max

x

image15.wmf
t

v

j

b

1

)

2

(

oleObject163.bin

image160.wmf
in

f

oleObject164.bin

image161.wmf
st

I

oleObject165.bin

image162.wmf
Q

T

t

I

st

×

-

=

)

/

1

(

oleObject166.bin

image163.wmf
ï

ï

ï

î

ï

ï

ï

í

ì

-

³

-

-

<

-

£

-

+

<

-

=

min

max

max

min

max

min

)

1

(

,

)

1

(

0

),

1

(

0

)

1

(

,

)

(

13

13

x

x

I

I

f

x

x

x

I

I

f

I

I

f

x

I

I

f

x

t

x

st

in

st

in

st

in

v

st

in

v

oleObject167.bin

oleObject14.bin

image16.wmf
j

v

1

oleObject15.bin

image17.wmf
t

v

j

b

1

)

3

(

oleObject16.bin

image18.wmf
j

v

1

oleObject17.bin

image19.wmf
t

v

j

b

1

)

4

(

oleObject18.bin

image20.wmf
j

v

1

oleObject19.bin

image21.wmf
0

)

)

(

(

1

1

1

1

1

<

´

-

+

+

-

y

t

v

t

v

t

v

t

v

t

v

j

j

j

j

j

D

I

I

D

I

oleObject20.bin

image22.wmf
1

1

=

t

v

j

FO

oleObject21.bin

image23.wmf
0

1

=

t

v

j

FO

image1.wmf
E

V

V

G

,

,

2

1

=

oleObject22.bin

image24.wmf
1

1

=

t

v

j

FO

oleObject23.bin

image25.wmf
t

v

j

f

1

oleObject24.bin

image26.wmf
å

+

=

t

profit

t

v

initial

v

t

v

j

j

j

f

f

f

,

1

1

1

oleObject25.bin

image27.wmf
å

t

profit

t

v

j

f

,

1

oleObject26.bin

image28.wmf
j

v

1

oleObject1.bin

oleObject27.bin

image29.wmf
t

t

v

income

t

v

profit

t

v

j

j

j

f

f

f

cos

,

,

,

1

1

1

-

=

oleObject28.bin

image30.wmf
t

t

v

j

f

cos

,

1

oleObject29.bin

image31.wmf
)

))

(

(

)(

/

(

1

1

1

1

1

3

2

1

cos

,

y

´

-

+

+

+

+

=

t

v

t

v

t

v

t

v

t

t

v

j

j

j

j

j

D

I

I

D

C

C

Q

C

f

oleObject30.bin

image32.wmf
3

2

1

,

C

C

C

，

oleObject31.bin

image33.wmf
income

t

v

j

f

,

1

image2.wmf
}

,...,

,

,

{

1

13

12

11

1

N

v

v

v

v

V

=

oleObject32.bin

image34.wmf
t

v

t

v

income

t

v

j

j

j

D

x

f

1

1

1

,

´

=

oleObject33.bin

image35.wmf
t

v

j

D

1

oleObject34.bin

image36.wmf
å

=

M

i

v

t

ij

t

v

i

j

D

e

D

2

1

oleObject35.bin

image37.wmf
ï

î

ï

í

ì

´

-

³

-

´

-

+

-

=

otherwise

I

I

D

D

I

I

I

D

D

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

j

j

j

j

j

j

j

j

j

,

2

/

0

)

(

,

1

1

1

1

1

1

1

1

1

y

y

oleObject36.bin

image38.wmf
ï

î

ï

í

ì

³

-

´

-

+

-

-

´

-

+

-

=

-

-

-

otherwise

Q

D

D

I

I

I

D

D

I

I

I

I

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

t

v

j

j

j

j

j

j

j

j

j

j

j

,

0

)

(

,

)

(

1

1

1

1

1

1

1

1

1

1

1

1

-

1

-

1

-

1

1

1

y

y

oleObject2.bin

oleObject37.bin

image39.wmf
y

´

-

=

2

/

1

1

1

t

v

t

v

t

v

j

j

j

I

I

D

oleObject38.bin

image40.wmf
t

v

j

D

1

oleObject39.bin

image41.wmf
t

v

j

I

1

oleObject40.bin

image42.wmf
j

v

1

oleObject41.bin

image43.wmf
Q

I

j

j

v

=

"

0

1

,

image3.wmf
}

,...,

,

,

{

2

23

22

21

2

M

v

v

v

v

V

=

oleObject42.bin

image44.wmf
t

e

t

r

a

-

=

)

(

oleObject43.bin

image45.wmf
1

)

(

0

,

0

,

1

0

£

£

>

<

<

t

r

t

a

oleObject44.bin

image46.wmf
1

)

(

,

0

=

=

t

r

t

oleObject45.bin

image47.wmf
0

)

(

lim

=

¥

®

t

r

t

oleObject46.bin

image48.wmf
x

<

)

(

t

r

