globals [
 victim.seed ;; number of victims in the model
 strat.seed ;; number of victims with cooperative strategy
 state.origin ;; countries from which state accepts migrants
 state.x ;; value(s) of attributes that leads state to accept migrant
 state.y
 state.z
 victimsIdentified
 migrantsAccepted

]

turtles-own [
 origin ;; country of origin
 x ;; generic atribute
 y ;; generic atribute
 z ;; generic atribute
 victim? ;; boolean that identifies as victim or not
 strategy ;; holds agent cooperative or defect strategy
 interacted? ;; boolean. Has state interacted with you?
 identified? ;; boolean. victim identified?
 accepted? ;; boolean. migrant granted entry by state?
]

to setup
clear-all
reset-ticks
ask patches [
 sprout 1]
set victimsIdentified 0
set migrantsAccepted 0
set victim.seed round (%victims * count turtles) ;; determines number of victims in the model based on interface slider "%victims"
ask n-of victim.seed turtles [;; seeds model with the number of victims
 set victim? true
 set identified? false]
set strat.seed round (%coop * count turtles with [victim? = true]) ;; determines number of cooperative victims in the model based on interface slider "%coop"
ask n-of strat.seed turtles with [victim? = true] [;; seeds model with the number of cooperative victims
 set strategy "coop"]
ask turtles [;; gives agents attributes
 set interacted? false
 set shape "person"
 set color red
 set origin random diversity.origin ;; assigns number value to each attribute in a range from 0 to the value selected with the interface sliders "diversity"
 ;; provides for more or less diversity in the model
 set x random diversity.x
 set y random diversity.y
 set z random diversity.z
 if victim? != true [
 set victim? false
 set color green]
 if strategy != "coop" and victim? = true [set strategy "deceive"]]
setStatePolicy

end

to go
 if ticks >= 1089 [stop] ;; run stops when all agents have interacted with state
 interactWithMigrants
 tick
end

to test
 type "victims " print count turtles with [victim? = true]
 type "coop victims " print count turtles with [strategy = "coop"]

end

to setStatePolicy ;; sets the value of agent attributes the state looks for to accept migrants
 set state.origin n-values state.origin.range [[i] -> i] ;; adds each value within the range established by interface sliders "state.origin.range"
 set state.x n-values state.x.range [[i] -> i]
 set state.y n-values state.y.range [[i] -> i]
 set state.z n-values state.z.range [[i] -> i]
end

to interactWithMigrants ;; state interacts with migrant
 if migrantsAccepted = quota [stop] ;; run stops if state quota is filled
 ask one-of turtles with [interacted? = false] [
 if vca and victim? = true and strategy = "coop" [;; if victim-centered approach is activated
 identify]
 if member? origin state.origin and member? x state.x and member? y state.y and member? z state.z[;; compares agent attribute against state policy
 if interacted? = false [
 accept]]
 set interacted? true
]
end

to accept
 set accepted? true ;; if state interacts with victim with cooperative strategy, marked "accepted" (i.e. granted entry to country)
 set migrantsAccepted migrantsAccepted + 1 ;; increases counter of migrants acepted
 set interacted? true
 set shape "face happy"
end

to identify
 set identified? true ;; if state interacts with victim with cooperative strategy, marked "identified"
 set victimsIdentified victimsIdentified + 1 ;; increases counter of victims identified
 accept
end

to-report missed
 report count turtles with [identified? = false and shape = "face happy"]

[bookmark: _GoBack]end
