3. Model 
3.1. The Proposed Model
In this section, we propose our computational models to study the effect of the location and dyadic communication regime on the team performance (as measured by their opinions on various work-related issues) in the existence of a strong demographic faultline. Our models are extensions of the Flache and Mäs (2008) model (FM). For clarification purposes, first we describe the FM model and then elaborate our extensions. Let’s consider a set of N agents each having the following attributes:
1) Opinion: a K-dimensional vector containing o1, o2, …, ok representing by real numbers in the range of [-1, 1], reflecting the opinion of an agent with respect to k different organizational issues. The continuous opinion can be interpreted as the extent to which agents are in favor of or against to a given work-related issue.
2) Demographic Attributes: an m-dimensional vector containing d1, d2, …, dm representing by integer numbers {-1, 1}, reflecting the demographic characteristics of agents. The dichotomous values for di has been imposed to operationalize the assumption that the demographic attributes of agents are clearly distinguishable. Flache and Mäs (2008) further assume that the demographic attributes and opinions are equally salient.
In the FM model, the direction and strength of the social influence of an agent i on an agent j is moderated by the interpersonal relations between i and j represented by the weight matrix W in which -1 ≤ wij ≤ 1. The positive and negative sign of the wij reflect the positive and negative influence respectively. Moreover, wij = 0 either means that there is no connection between the two agents, or that they are indifferent against each other.
At each simulation time step, an agent is uniformly selected at random to either simultaneously updates its opinions, or simultaneously updates its weights with the probability of 0.5. Here, Flache and Mäs (2008) assumed that an agent updates its opinion vector or the weight matrix after interacting with all other agents. They condition the updating processes based on the sign of the Eq. 1:
Δ oik,t =   ∑i≠j wij (ojk,t - oik,t)                               (1)

oik,t+1 =                  (2)

To update the weights, Flache and Mäs (2008) assumed that the interpersonal weight of an agent i toward an agent j is a function of their similarities in opinions and demographics (Eq. 3):
wij,t+1 = 1-                   (3)

For our modeling purposes, we modify the FM model in three ways and analyze each extension separately. First, we change the communication regime of agents to a pairwise regime in which each agent updates its opinion after interacting with only one other agent. Communication regime defines the rules about who is communicating with whom at what time. However, social reality may restrict the number of agents meet at once such that agents update their opinion after communicating with everyone (as it is assumed in the FM model), or update after interacting with each agent. The debate started in the literature of the bounded confidence opinion dynamics models since Deffuant et al (2000) and Hegselmann and Krause (2002) proposed their seminal models. Similar debate exists for the Axelrod’s (1997) model of cultural dissemination (e.g. Flache and Macy (2011)). While the former assumes that agents interact in the dyadic encounters, the latter allows agents to interact with all others who fall within their uncertainty boundary. 
In this paper, we prefer the dyadic communication regime because it fits better with our modelling purposes in which we would like to model the effect of the interpersonal spatial distance between the agents. Therefore, in our first modeling step, we keep all parts of the FM model and only change its communication regime. More formally, we change the Eq. 1 to Eq. 4, but the Eq. 2 and 3 remain unchanged. We call this new model as the Extended Flache-Mäs model (EFM).
Δ oik,t =   wij (ojk,t - oik,t)                 (4)

Second, we change the activation regime of the agents from the random to a Poisson one. The key element of our model is to take the geographical proximity of the agents into account. In doing so, we assume that the more two agents are geographically closer to each other, the higher the probability that they interact with each other. In other words, we penalize the probability that an agent i is selected to interact with an agent j with their spatial distance lij. The best way to operationalize this concept in an agent-based model is through the activation regime.
The activation regime (a.k.a. “timing”, “scheduling”, or “updating”) is the timing of activation, or the probability that an agent gets called and take its action (Page 2005). Some researchers use “updating scheme” for the same concept, but following Axtell (2001), Page (2005), and Alizadeh and Cioffi-Revilla (2015), we prefer to use “activation regime”, as the use of “updating” may get confused with the concept of updating rules in agent-based models. Moreover, we call it “regime” because it is a parameter of the model which is independent of the agents’ attributes (Urbig et al 2008). For a comparison of the effect of the different activation regimes on the bounded confidence agent-based opinion dynamics models see Alizadeh and Cioffi-Revilla (2015).
In the Poisson activation regime, each agent has an internal clock which wakes it up periodically to take its action. A period is defined as the amount of ‘wall time’ such that A agents are active on average (Axtell 2001). The λ parameter of the Poisson distribution is then defined based on the agents’ attribute of interest (in our case lij). While in the random activation regime, which has been implemented in the FM and EFM models, the activity level of all agents is equal and fixed, in the Poisson activation regime the activity level of agents differs and some agents are more active than others. The advantage of this approach is that it makes the agents truly autonomous and heterogeneous. The disadvantage is that it is computationally expensive.
To implement the distance-based Poisson activation regime on the EFM model, we uniformly assign a 2-dimension location vector [xi, yi]  [0, 1] at random to each agent, representing the geographical coordinates of the agents on a physical space. Next, we compute and normalize (Eq. 5) the pairwise Euclidean distance between all N agents to make sure that all values are constrained between 0 and 1:

   (5)

where lmin and lmax are the minimum and maximum computed distances between all agents respectively. We consider these normalized values as the λ parameter of the Poisson distribution. Next, assuming that the model will be run for T periods, we draw T random numbers for each agent as Eq. 6. Finally, we use these T random numbers to develop a schedule list of paired agents activation. In other words, at each time step of the simulation, two agents get activated to either update their opinions according to the Eq. 4, or update their mutual weights according to the Eq. 3 with the probability of 0.5. We call this version of the FM model as Extended Flache-Mäs Model with Poisson activation regime (EFM-P). 

ti+1 = ti - log(U[0,1])   (6)
Finally, since individuals’ location tend to be geographically clustered in the real-world organizations, it is rewarding to analyze the extent to which having geographically clustered coordinates affects the behavior and properties of our proposed EFM-P model. In doing so, we construct a set of m Gaussian-distributed clusters. That is, first we uniformly generate (xi, yi), where i = 1, 2, …, m, at random and then generate N/m coordinates for each generated (xi, yi) points drawn from a Gaussian distribution with  = xi and  = 0.05. Fig. 1 compares the uniformly and clustered distributed geographical coordinates of the agents. We call this version of the EFM-P model as the EFM-P with clustered coordinates (EFM-P-C). Table 1 compares the key features of the EFM and EFM-P models with the Flache and Mäs (2008) and Grow and Flache (2011) models. Table 2 summarizes the components of the EFM-P model.
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Fig. 1: Demonstrating the Uniformly and Clustered Distributed Coordinates
Table 1: Comparing the Agent-based Opinion Dynamics Models of the Faultline Theory
	
	Flache and Mäs (2008)
	Grow and Flache (2011)
	EFM
	EFM-P
	EFM-P-C

	Supporting Theory
	Faultline Strength
	Faultline Strength
	Faultline Strength
	Faultline Strength
	Faultline Strength + Spatial Clustering

	Dimension
	K
	K
	K
	K
	K

	Uncertainty
	
	
	
	
	

	Communication Regime
	Group
	Group
	Dyadic
	Dyadic
	Dyadic

	Activation Regime
	Random
	Random
	Random
	Poisson
	Poisson

	Distribution of Coordinates
	NA
	NA
	NA
	Uniform
	Clustered




3.2. Computing the Faultline Strength
Flache & Mäs (2008) developed a method that is capable of keeping diversity constant while varying the faultline strength. We denote the faultline strength by parameter f which varies between 0.5 and 1. All demographic attributes have higher correlation if f is closer to 1, whereas f = 0.5 means they are all uncorrelated and the faultline has the minimal strength. Parameter f determines the relationship between demographic attributes of agents. For example, d = 3 and f = 0.8 means that the first %80 (%100*f) of agents’ second demographic attributes are the same with their first demographic attribute and the rest of the agents have the opposite value. Also for the third attribute of agents, the %40 (%50*f) have the same value with the first attribute, then they get opposite value until (N/2 + 1)th agent. Again %40 (%50*f) of agents have the same value and finally the rest of the agents have the opposite value
3.3. Outcome Measures
The Lau and Murnighan’s faultline theory asserts two principles about the team performance: 1) the relationships between “the faultline strength and the level of consensus”; and 2) “the faultline strength and the degree to which divisions in opinions are associated with demographical divisions”. To evaluate whether the FM model can reconstruct these relationships, Flache and Mäs (2008) defined four outcome measures as follows: 
1- Opinion Diversity: derives from the number of different opinion vectors which is presented in the whole group divided by N for normalization. Opinion diversity captures the number of different cases in opinions represented in a team. This measure changes between 0 and 1, which opinion diversity = 0 shows the perfect consensus. Opinion vectors of two agents considered to be different from each other if their flexible attributes differ in at least one dimension k by a magnitude of 0.001 or more as suggested by Flache and Mäs (2008). It is worth mentioning that perfect consensus and high polarization both imply low opinion diversity.




Table 2: The Summary of the Proposed EFM-P Opinion Dynamics Models’ Components
	 
	Description
	Abbreviation
	Value/Range of Values/Equation

	Agents

	Type
	Individuals
	Each agent represents an individual  
	- 
	- 

	
	Attributes
	
	
	
	

	
	
	Opinion
	The opinion of agent i on k’th issue
	oik
	[-1, 1]

	
	
	Demographic Attribute
	The m’th salient demographic attribute of agent i 
	dim
	{-1, 1}

	
	
	Coordinates
	The geographical coordinates of agents
	xi, yi
	[0, 1]

	
	
	Interpersonal Weights
	The direction and strength of the social influence of agent i on agent j
	wij
	wij,t+1 = 1-  

	
	Methods:
	Attraction
	Agents get closer in one or more opinion(s) 


	- 
	

oik,t+1=


	
	
	Differentiation
	Agents shift away from each other in a given opinion
	- 
	

	Parameters
	Modeling
Parameters
	 
Communication Regime
	
Define the rules about who is communicating with whom at what time?
	
-
	
Pairwise/Dyadic

	
	
	Activation Regime
	Define the timing of activation, or the probability that an agent gets called and take its action
	-
	Poisson 

	
	Global
Variables
	Population
	Number of agents in the model 
	N 
	20 

	
	
	
	
	
	

	
	
	Iterations
	Number of time steps in each run of the model 
	- 
	Until equilibrium reaches




2- Opinion Variance: computes as the average standard deviation of the opinions across all K dimensions of the opinion space and represents the average distance between the opinions of different agents. This measure also varies between 0 and 1. Zero represents the perfect and one shows the perfect polarization with two equally large maximally opposing subgroups. It should be noted that the high level of the opinion variance does not necessarily implies the group polarization. Opinion variance can be high if agents have strong differences in all dimensions of the opinion space, but these differences are not correlated across dimensions.
3- Polarization: captures the degree to which a team separates into a small number of opposing clusters who have maximally different opinions on all dimensions. Following Flache and Mäs (2008), we compute the polarization by using the variance of pairwise agreement across all pairs of agents. Like previous two measures, this one also holds zero for the perfect consensus and help us to evaluate the degree of polarization or consensus in the opinion distribution of a team. The maximum level of polarization (polarization = 1) is obtained when the population is equally divided into two ending spectrums of the opinion scale at -1 and +1 and all opinion dimensions have perfect correlation.
4- Demographic-Opinion Covariance (Cov(d,o)): measures the relationship between the demographic attributes of agents and their opinion vector and computed as the covariance between the vector of pairwise demographic dissimilarities and the pairwise opinion dissimilarities. For every pair of i and j, the dissimilarity measures  and  computed as the Eqs (7) and (8).

∆di,j  =  dim - djm∣                 (7)
∆oi,j  =  oik - ojk∣                 (8)

And the covariance calculates as the Eqs (9).

Cov (d, o) =          (9)

3.4. Equilibrium
Following Mäs et al (2013), we consider our model to have reached the equilibrium if it is either reached to a perfect consensus or a perfect subgroup polarization. Perfect consensus is a state at which all agents hold a same opinion. Perfect subgroup polarization happens when there are only two subgroups of agents whose opinions maximally differ across all groups and minimally differ within groups. Therefore, in all of our simulation analyses, we run all models until one of these steady states is obtained.
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