
Table 1: This table summarizes the variables and parameters of the model.
Parameter values are chosen ad hoc and are provided only for completeness.

Variable Description Value
NumComm Number of communities 500
NumUser Number of users 500
NumTask Number of tasks 500
MinP Minimum task number 4
MaxP Maximum task number 100

i Community index i = 1, 2, ..., NumComm
j User index j = 1, 2, ..., NumUser
k Task index k = 1, 2, ..., NumTask

s User skill 2 ≤ s ≤
√
MaxP

Pi User population of community i 0 ≤ Pi ≤ NumUser
Ti Topic of community i MinP ≤ Ti ≤MaxP
Aj Attention level of user j Aj = 0, 1

S(j) Skill of user j 2 ≤ S(j) ≤
√
MaxP

UCj Community that user j belongs to UCj ∈ i
TCk Community that task k belongs to UTk ∈ i
TNk Task number of task k MinP ≤ TNk ≤MaxP
CHk,s Record of skill s being applied to task k CHk,s = 0, 1
rr Community replacement rate 0.05
λ Topic adjustment rate 0.1

1 Introduction

In order to study the population dynamics of online communities, a simulation
model is developed. In this model, users can move between communities while
completing tasks that they encounter. The model includes: task generation,
task allocation, user contribution, task completion, and user movement.

Three types of agents are considered in this model: tasks, users, and commu-
nities. Tasks are described by a task number, a list of past contributions, and a
community to which that task belongs. Users are described by a skill number,
their attention level, and the community they are participating in. Communities
have a topic as well as user and task populations. The model is run in discrete
time and the state variables are modified at each time step. Table 1 provides a
complete list of variables and parameters.

The model used is a foraging model, tailored to suit online communities.
Users are the foragers and they forage for tasks. However, users are heteroge-
neous, and a task that one user can complete might be outside the skill set of
another user. Thus, tasks can be thought of as the resource users are foraging
for, and users contributing to a task is what consumes that resource. Commu-
nities serve to divide the simulation environment into locations for foragers to

1



move between.

2 Tasks

The task considered in this model is the identification of prime numbers. This
task was chosen because it allows for heterogeneity in task “topic, as well as
heterogeneity in agent skill. A user’s skill is thought of as an integer. This
integer is the number the user can divide by. A task is complete when a user
successfully divides the task (nonprime) or when every applicable skill has been
applied to the task (prime). Tasks are the resource that users forage for. During
each time step of the model tasks must be generated, allocated to communities,
receive user contributions, and checked for completion.

In this model task generation occurs separately from task allocation. It is
assumed that tasks are generated independently of the communities modeled.
This could be justified by the observation that in online communities, those
that ask questions, and those that answer them, are largely disjointed. Newly
generated tasks then occur according to the parameters of the model rather than
the dynamic variables. When a new task is generated it is chosen randomly to
be any of the possible tasks considered (integers between MinP and MaxP ).

P
(
TN{k|TCk(t)=0}(t+ 1) = x

)
=

{
1

1+MaxP−MinP x ∈ [MinP,MaxP ]

0 x /∈ [MinP,MaxP ]

}
Created tasks must be assigned to a community. Tasks are assigned based on

two key factors: the size of the community (Pi) and the topic of the community
(Tj). Community size is included to mimic the effect that popular communities
receive more tasks then less popular communities. This is a form of preferential
attachment, which is often included in models of online communities. Com-
munities are assumed to focus on specific topics, and tasks are allocated to
communities with similar topics. The topic of a community is not static, but
reflects the tasks that a community has recently had success with.

P
(
TC{k|TCk(t)=0}(t+ 1) = x

)
=

{
1∑

i
f(i,k)

f(x, k) = 1

0 f(x, k) 6= 1

}

f(i, k) =

{
1 TNk(t+ 1) ∈

[
Ti(t)− 100Pi

NumUser , Ti(t) + 100Pi

NumUser

]
0 TNk(t+ 1) /∈

[
Ti(t)− 100Pi

NumUser , Ti(t) + 100Pi

NumUser

] }
Although the tasks that enter the simulation environment are independent

of the communities, which community receives the task does depend on both
the size and previous work of the community. Communities are considered to
have a topic, bounded in the same domain as tasks, that reflects the specialty of
the community. Additionally, larger communities are considered more able to
meet a variety of challenges, expanding the range of tasks they can accept. The

2



growth in range is assumed to be linear and such that if all users are in a single
community, that community can accept all tasks. The new task generation and
allocation occurs once per task completed in the previous round. This way, a
population of NumTask tasks is maintained in the simulation environment.

Once a task is assigned to a community, its users are able to contribute
to it. In a given community, the users that contribute, and the tasks that
get contributions, depend on the number of users with a particular skill and
the number of tasks that require that skill. For each community and skill the
number of users with that skill, and the number of tasks to which that skill is
applicable, are counted. This can be represented as in:

NU(i, s) =
∑

j|UCj(t)=i,S(j)=s

1

NT (i, s) =
∑

k|UTk(t)=i,TNk(t+1)≤s2,CHk,s(t)=0

1.

Only unique contributions are counted, and users that are able to make a
unique contribution are assumed to do so. These assumptions mean that for a
given community and skill, either every user will contribute or every task will
receive a contribution. Of the larger population, a number of members equal
to that of the smaller population is chosen to provide or receive the contribu-
tions. These assumptions provide probabilities for a contribution occurring for
both tasks and users where the probability of a task receiving a contribution is
determined by the relative abundance of users and vice versa.

P
(
CH{k,s|CHk,s(t)=0,TN+k≤s2}(t+ 1) = 1

)
=

{
min

(
1, NU(TCk(t+1),s)

NT (TCk(t+1),s)

)
NT (TCk(t+ 1), s) > 0

0 NT (TCk(t+ 1), s) ≤ 0

}

P (Aj(t+ 1) = 1) = min

(
1,
NT (TCk(t+ 1), s)

NU(TCk(t+ 1), s)

)
A trivial consequence of these equations is that for each time-step, in each
community, either every user with a particular skill will contribute or every
task that requires that skill will have it applied.

Completed tasks are removed from the simulation at the end of every time-
step, rather than as they are completed. This can be thought of as time used to
verify that the task is complete or to accept a solution. The list of skills applied
to a task is used to check if either a user has been able to identify the task as
nonprime, or the community has identified a number as prime:

Nonprime(k) =

{
1 {s|TNk(t+ 1), CHk,s(t+ 1) = 1} 6= ∅
0 {s|TNk(t+ 1), CHk,s(t+ 1) = 1} = ∅

}

Prime(k) =

{
1 1 +

∑
s CHk,s >

√
TNk(t+ 1)

0 1 +
∑

s CHk,s ≤
√
TNk(t+ 1)

}

3



Complete(k) = max(NonPrime(k), P rime(k))

Nonprime numbers are detected by checking if any of the contributions to a
task divides the task number, if at least one does the number cannot be prime.
The identification of prime numbers requires that every skill that is applicable
(less than or equal to the square root of the task) has been applied. It is possible
for the function identifying primes to give false positives but, as no distinction
is made, it does not affect results. Tasks that are completed need to be removed
for the model to allow for new tasks. This is accomplished by the following
equations:

CH{k,s|Complete(k)=1}(t+ 1) = 0

TC{k|Complete(k)=1}(t+ 1) = 0

The other effect of a completed task is the shift of topic in the communities,
which is accomplished with a simple learning algorithm of the form:

Ti = (1− λ)Ti + λTNk

where λ is a topic adjustment rate, Ti is the topic of community i, and Nk is
the task number of task k.

3 Users

The users of online communities are a heterogeneous population searching for
something to hold their attention. Users differ in the skill they have for com-
pleting tasks, as well as in location. The skill of users is a fixed initial condition
so users must move between communities to find tasks to contribute to. Users
can leave a community either to join another community or to establish a new
community.

Movement of users is driven by an algorithm based on win-stay, lose-shift,
as well as preferential attachment. Users are assumed to change communiteis
every round in which they fail to contribute, and where they move to is based
on the population of the other communities:

P
(
UC{j|Aj=0}(t+ 1) = x

)
=

{
Px∑
i6=x

Pi
x 6= UCj(t)

0 x = UCj(t)

}
The other condition for user movement is the foundation of a new com-

munity, and it is assumed to increase linearly with the number of abandoned
communities:

P (UCj(t+ 1) = x) =

{
rr

NumUser Px = 0
0 Px 6= 0

}

4



4 Initialization

At initialization users are assigned a skill between two and the square root of
MaxP , which is the set of possible divisors of task numbers. Communities
are assigned a topic from the same distribution as task numbers, and users are
assigned to communities. Each of these assignments are assumed to be random.

5 Implementation

The model was implemented in both MATLAB and NetLogo.

5


