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I.i Purpose I.i.a What is the purpose 
of the study? 

To synthesise and extend existing work on human cooperation and 
collective action, to elucidate possible determinants and pathways 
to regulatory compliance in groundwater systems globally.  

We have designed the ‘Groundwater Commons Game’ (GCG) as a 
scientific instrument to systematically investigate mechanisms that 
may lead to compliance with groundwater conservation policies, 
taking into consideration human behavioural variables revealed by 
the World Values Survey.  
 
The study aims to:  
● offer general insights that are applicable to aquifers everywhere  
● parametrise agent behaviours using the most recent version of the  
World Values Survey 
● develop GCG simulations for three real-world case studies; the 
Punjab (India/Pakistan), the Central Valley (USA), and the Murray-
Darling Basin (Australia) 
● assess the validity of results using surveys from the Murray-
Darling Basin  
● propose policy recommendations of global relevance  
 
More broadly, the systems understanding that we present here has 
general implications to any regulated resource that is accessed by 
many users, as in the case of fisheries, forests, wildlife and global 
climate.  
 

I.ii.b For whom is the 
model designed? 

The model is designed for groundwater scientists, groundwater 
managers, decision and policy makers interested in natural resource 
management and regulatory compliance. The GCG can also be used 
for learning activities in undergraduate and graduate courses in 
environmental management.  
 
Water managers typically evaluate the performance of enforcement 
and compliance policies via manager experiences, outcomes from 
enforcement actions, field surveys and interviews. These 
instruments however may not reveal the true motivations and 
attitudes towards water regulation. The cost and time of conducting 
empirical research can be significant. These are major challenges 
for decision-makers searching for courses of action that lead to 
long-term compliance and extend economic activity in groundwater 
basins subject to depletion. Simulation-based approaches like the 
one proposed here can help water authorities overcome the 
difficulties of studying rule-breaking behaviour directly, and 
provide new insights on how human behaviour impacts resource 
conservation at the global scale. 
 

I.ii Entities, 
state 
variables, and 
scales 

I.ii.a What kinds of 
entities are in the model? 

• Individual farmers 
 

• A water authority/regulator 
 

• The groundwater resource—a physical entity 
 

• The agricultural region—defined by the number of farmers and 
the local economy 
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I.ii.b By what attributes 
(i.e. state variables and 
parameters) are these 
entities characterized? 

Farmer: geographical location (determines depth to water table), 
irrigated acreage (ha), gross margins from crop ($/ha), behavioural 
strategy (B=boldness, P=punitiveness), pumping decision (comply, 
defect), mutation probability (probability that the agent will try a 
new strategy, fixed at 5%), Economic utility (E), Institutional utility 
(I), Social utility (S), overall Performance Index (PI=E*I*S), rule-
follower (yes/no), grid/group scores (determined from the WVS, 
see Methods), pump efficiency (~80% for centrifugal pumps), 
returns ($/ha), irrigated area (ha) 
 
Water authority: Pumping cap (% of licensed allocations), % 
monitoring capacity (M, 0-50%), magnitude of monetary fines (F, 
representing the fraction of farmer profit forgone to pay a fine), 
risk-based management (yes/no), monitoring style 
(constant/adaptive), graduated sanctions (yes/no) 
 
Groundwater: model size (kmxkm), number of cells, cell 
dimensions (m), boundary conditions (no-flow, specified-flux), 
aquifer thickness (m), hydraulic conductivity (m/d), storativity, 
initial heads (m) 
 
Agricultural region: number of farmers (per/ha), crop parameters 
(type, price $/ton, yield ton/ha, water requirement ML/ha, energy 
price $/kWh, other variable costs $/ha) 

I.ii.c What are the 
exogenous factors / 
drivers of the model? 

• Country-level Grid-Group scores determined from the World 
Values Survey 

• Level of monitoring (M) and fines (F) adopted by the water 
authority 

• % rule-followers in the population 
• Groundwater conditions (hydraulic parameters, boundary 

conditions) 
I.ii.d If applicable, how is 
space included in the 
model? 

Explicitly through the location of each farm within the modelled 
domain. The depth to groundwater is spatially variable (following 
the hydraulics of groundwater flow), thus location determines the 
costs to extract groundwater, and the information each farmer has 
on his/her neighbour’s strategies.  

I.ii.e What are the 
temporal and spatial 
resolutions and extents of 
the model? 

Six-month timesteps over a period of 100 years. The first 50 years 
represent a burn-in period without management, followed by 50 
years of groundwater regulation. Irrigation decisions are taken at 
the beginning of a season, i.e. once a year, except in the wheat-rice 
rotation in Punjab example where irrigation decisions are taken 
twice a year.  
 
The groundwater sub model represents a 10x10 km basin, 
discretised into 40x40 cells. The dimension of each cell is 200 m. 
Model boundary conditions are defined by a no-flow boundary to 
the North and South, and constant head boundary cells to the East 
and West; setting head values to create an East-West gradient of 
1/1,000 representing typical conditions in regional aquifer systems. 
Groundwater is pumped from a semi-confined sand aquifer of 50 
m thickness, hydraulic conductivity K=10 m/d and storativity 
St=1e-4.   
 

I.iii Process 
overview and 
scheduling 

I.iii.a What entity does 
what, and in what order? 

See Supplementary Figure 1 below 

 

II.i 
Theoretical 
and 
Empirical 
Background 

II.i.a Which general 
concepts, theories or 
hypotheses are 
underlying the model’s 
design at the system level 
or at the level(s) of the 

Tipping points and critical transitions3-5, theory of complexity and 
complex adaptive systems6, groundwater hydraulics7. 

The link to complexity related to emergent patterns across the grid-
group plane in the form of tipping points. This suggests that certain 
social interactions and nonlinearities in the system can be exploited 
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sub model(s) (apart from 
the decision model)? 
What is the link to 
complexity and the 
purpose of the model? 

to trigger long-term resource conservation.  

II.i.b On what 
assumptions is/are the 
agents’ decision model(s) 
based? 

Agents are bounded rational8, use a form of inductive reasoning9, 
rely on heuristics10 and they have no foresight11,12.  
 
Agents engage in a process of trial and error to determine their best 
decision (how to update their strategies in terms of B and P) based 
on their experience with past strategies and the imitation of 
successful neighbours. This assumption is supported by recent work 
in the context of the role of imitation in land use change and the 
adoption of agricultural innovations, and work on imitation in 
spatial games{Gotts:2009td}—this research confirms that farmers 
are influenced toward adopting new land uses, techniques, or 
behaviours by the example of other farmers they know. Studies of 
the spatial characteristics of innovation diffusion also indicate that 
imitation of neighbours is important.  
 

II.i.c Why is a/are certain 
decision model(s) 
chosen? 
 
 
 
 
 
 

The decision model of the water authority is based on real-world 
attributes of groundwater governance systems. 
 
The decision model of farmers builds on Robert Axelrod’s seminal 
paper on the emergence of social norms13. Here, we adapt 
Axelrod’s framework to study social norms in the context of 
compliance with groundwater conservation policies. The GCG is 
designed to be very general and the approach can be applied to any 
number of problems involving stressed groundwater systems. The 
structure and assumptions of the GCG can be easily tailored and/or 
extended to suit specific economic, institutional, social, and 
hydrogeological contexts.  
 
Key changes to Axelrod’s original model are:  

1. We consider local interactions between neighbouring 
agents, instead of a “soup” model as in Axelrod’s model, 
where all agents interact with each other. In our model, 
monitoring and punishment is local instead of global; 
see14.  

2. We incorporate the physics of groundwater flow as one of 
the drivers of agent behaviour. We explicitly quantify the 
economic damage (externality) imposed by defecting wells 
on other wells, which manifests as additional pumping 
costs incurred within a neighbourhood of the defecting 
well. The extent of this neighbourhood is determined by 
the local hydrogeological conditions and the magnitude of 
a breach.  

3. We use a combined score metric to quantify ‘fitness’ of an 
agent at every moment, based on economic, institutional 
and social factors. In the Axelrod case, fitness is entirely 
driven by the social component.  

4. We introduce variability in the magnitude of breaches, as 
we would expect in agricultural settings.  

5. Breaches are not only enforced by agents, but also by a 
water authority: the water authority. Enforcement 
therefore occurs at the local and basin scales.  

II.i.d If the model / a 
submodel (e.g. the 
decision model) is based 
on empirical data, where 
does the data come from? 

Agent behaviour is parametrised using Grid-Group dimensions 
obtained from Wave 6 of the World Values Survey   
 
The hydraulic properties of the groundwater sub model are typical 
of groundwater basins in alluvial settings15. All hydrogeological 
parameters can be changed with frugal user intervention via the 
provided interface.  
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II.i.e At which level of 
aggregation were the 
data available? 

The WVS is conducted at the country-level and each wave 
represents a period of approximately four years. 

 
II.ii 
Individual 
Decision 
Making 

II.ii.a What are the 
subjects and objects of 
decision-making? On 
which level of 
aggregation is decision-
making modeled? Are 
multiple levels of decision 
making included? 
 

Decision making is modelled at two levels: 
 

• The water authority decides about the cap on groundwater 
allocations, the level of monitoring and the severity of 
fines 

 
• The farmers decide about whether to comply with the 

allocations or not, and in doing so, the area of land that 
will be irrigated in a given year. 

II.ii.b What is the basic 
rationality behind 
agents’ decision-making 
in the model? Do agents 
pursue an explicit 
objective or have other 
success criteria? 

Agents are assumed to employ a simple utility function to evaluate 
the social and economic implications of their actions.  This utility 
function combines: an economic score (E) that quantifies the gross 
margins of crop production, considering pumping costs based on 
local groundwater drawdowns; an institutional score (I) that 
notionally represents the proportion (0-100%) of gross margins 
forgone to pay fines; and a social score (S) that notionally 
represents the loss of reputation (proportional to Group) and the 
social costs of reporting offenders (inversely proportional to Grid). 
These components are combined into an overall performance index 
PI=E*I*S, which agents use to compare and decide among 
competing strategies (B,P). 

II.ii.c How do agents 
make their decisions? 

Agents rely on local information and operate on a simple heuristic 
to decide what do next: “imitate the strategy of whichever 
neighbour is doing best, exploit the current strategy if better, and 
explore a new strategy occasionally”12 
 
Decisions that are selected on the criterion of their recent 
performance within the neighbourhood of the land parcel 
concerned—as implemented in our model—is known as "Best-
mean Imitation". Gotts et al.{Gotts:2009td} show that Best-mean 
imitation outperforms other forms of imitation in a wide range of 
settings.  

II.ii.d Do the agents 
adapt their behavior to 
changing endogenous 
and exogenous state 
variables? And if yes, 
how? 

Yes, they use the imitation heuristic described above to adapt their 
behavioural strategies (B,P), which in turn define whether or not 
they will comply with water allocations and whether they will 
report offending neighbours. 

II.ii.e Do social norms or 
cultural values play a 
role in the decision-
making process? 

Indeed, our model focuses on a limited set of contextual factors 
that play a role in achieving community compliance—conservation 
policies, social norms, and cultural values. These factors have been 
identified as fundamental drivers of human cooperation16,17 and 
collective action18-20 in a wide range of settings. Cultural 
parameters are derived from the World Values Survey (see 
Methods) 
 

II.ii.f Do spatial aspects 
play a role in the decision 
process? 

Yes because the imitation of neighbours and the drawdown 
propagation are spatial factors influencing decisions.  
 

II.ii.g Do temporal 
aspects play a role in the 
decision process? 

In this study we assume that agents have no memory of past 
decisions; however this feature is implemented in the model (see 
Netlogo version of the model in Open ABM repository) 

II.ii.h To which extent 
and how is uncertainty 
included in the agents’ 
decision rules? 

Uncertainty is incorporated as agents are only aware of information 
about their immediate neighbourhood and not those further afield.  
 
Another source of uncertainty is the strategy mutation rate (fixed at 
5%) which determines how often agent will choose to try a 
completely new strategy. This introduces novelty to the pool of 
strategies in the agent population. 
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II.iii 
Learning  

II.iii.a Is individual 
learning included in the 
decision process? How do 
individuals change their 
decision rules over time 
as consequence of their 
experience? 

Learning occurs via a "best-mean imitation" 
heuristic{Gotts:2009td} based on past performance of strategies 
within the neighbourhood of the land parcel concerned. The 
heuristic is: imitate the strategy of whichever neighbour is doing 
best, exploit the current strategy if better, and explore a new 
strategy occasionally”12 

II.iii.b Is collective 
learning implemented in 
the model? 

Collective learning is not implemented in the model but it is an 
emergent property of the system. The decision heuristic is a genetic 
algorithm which the agent population uses to discover and exploit 
decisions that provide the highest utility, considering the 
simultaneous decisions of the collective 

II.iv 
Individual 
Sensing 

II.iv.a What endogenous 
and exogenous state 
variables are individuals 
assumed to sense and 
consider in their 
decisions? Is the sensing 
process erroneous? 

Individuals sense depth to water table, irrigation costs, yields and 
their budget. All these variables are known without error. 

II.iv.b What state 
variables of which other 
individuals can an 
individual perceive? Is 
the sensing process 
erroneous? 

A farmer can perceive the Performance Index (PI) and strategy 
(B,P) of its immediate neighbours (i.e., we assume they can look 
over the fence). 
 
The water authority can assess whether a farmer has complied or 
not with the allocated water, provided there is sufficient capacity 
and resources to send inspectors to the field (M determines the 
maximum number of farmers that can be audited in a given year) 
 
All these parameters and behaviours are known without error. 

II.iv.c What is the spatial 
scale of sensing? 

Basin (water authority), immediate neighbourhood (farmers). 

II.iv.d Are the 
mechanisms by which 
agents obtain 
information modeled 
explicitly, or are 
individuals simply 
assumed to know these 
variables? 

Sensing is local, but information can spread across through farmer 
networks. The calculation total utility (PI) is modelled explicitly (as 
a weighted average of social, institutional and economic utilities). 
 
All other variables are just known by the agents. 

II.iv.e Are costs for 
cognition and costs for 
gathering information 
included in the model? 

No 

II.v 
Individual 
Prediction 
  

II.v.a Which data uses 
the agent to predict 
future conditions? 

Agents have no ability to predict future conditions 

II.v.b What internal 
models are agents 
assumed to use to 
estimate future 
conditions or 
consequences of their 
decisions? 

No specific models 

II.v.c Might agents be 
erroneous in the 
prediction process, and 
how is it implemented? 

Agents’ predictions/decisions are erroneous because of unknown 
variability of other’s decisions. Agents neither know about the 
strategies, performance and decisions of agents beyond their 
immediate neighbourhood.  
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II.vi 
Interaction 

II.vi.a Are interactions 
among agents and 
entities assumed as direct 
or indirect? 

Direct via Best-mean imitation 
 
Indirect through groundwater extraction and the 
topology/superposition of pumping cones of depression. 

II.vi.b On what do the 
interactions depend? 

Location of agents within the basin 

II.vi.c If the interactions 
involve communication, 
how are such 
communications 
represented? 

There is no communication, agents essentially perceive the 
performance and strategies of other agents by ‘best-mean 
imitation’14 

II.vi.d If a coordination 
network exists, how does 
it affect the agent 
behaviour? Is the 
structure of the network 
imposed or emergent? 

The topology of the agent network is determined by the number of 
agents per hectare, as revealed by the FAOSTAT database (see 
Extended Data Figure 3)  

II.vii 
Collectives 

II.vii.a Do the individuals 
form or belong to 
aggregations that affect, 
and are affected by, the 
individuals? Are these 
aggregations imposed by 
the modeller or do they 
emerge during the 
simulation? 

No 

II.vii.b How are 
collectives represented? 

There are no collectives in this model 

II.viii 
Heterogeneity 

II.viii.a Are the agents 
heterogeneous? If yes, 
which state variables 
and/or processes differ 
between the agents? 

No 

II.viii.b Are the agents 
heterogeneous in their 
decision-making? If yes, 
which decision models or 
decision objects differ 
between the agents? 

The agents are not heterogeneous in their decision-making, but we 
impose no constraints on the strategies that they choose. 

II.ix 
Stochasticity 
 

II.ix.a What processes 
(including initialization) 
are modeled by assuming 
they are random or 
partly random? 

Individual agents are assigned a strategy (B,P), with each 
component independently drawn at random from a [0,1] uniform 
distribution. No correlation between B and P is assumed, although 
this may be an emergent property of the system. 
 
Also, when an agent chooses to try a new strategy, either B or P 
(with 50% chance) is replaced by a random number drawn from a 
[0,1] uniform distribution. 
 

II.x 
Observation 

II.x.a What data are 
collected from the ABM 
for testing, 
understanding, and 
analyzing it, and how 
and when are they 
collected? 

The data collected is: 
 
• Compliance (% of agents that comply),  
• Strength of social norms, SN=mean P – mean B 
• Gini coefficient (statistical measure of income inequality) 
• Mean water table drawdown below surface (m) 
• Total volume of breaches (ML) 
• Mean B 
• Mean P 
• Mean cumulative profits of agents 
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This data is collected at each time step and is available in time 
series format. 

II.x.b What key results, 
outputs or characteristics 
of the model are 
emerging from the 
individuals? (Emergence)

Our main finding is that collective attitudes towards groundwater 
conservation policies are governed by tipping points.  
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II.i 
Implementati
on Details 

III.i.a How has the model 
been implemented? 

The coupled agent-based groundwater model was developed using 
FlowLogo21 (Extended Data Fig. 2), a software platform developed 
in Netlogo specifically for this purpose21. 

III.i.b Is the model 
accessible and if so 
where? 

Yes, in the OpenABM library (www.openabm.org) of the ‘Network 
for Computational Modelling for SocioEcological Science’ 
(CoMSES) at: 
 
https://www.openabm.org/model/5634/version/1/view 
 
 

 
III.ii 
Initialization 

III.ii.a What is the initial 
state of the model world, 
i.e. at time t=0 of a 
simulation run? 

For our three case studies and for each possible combination of grid 
and group scores (9 grid scores x 9 group scores = 81 
combinations), we initialised 100 ‘unregulated’ (M=0, F=0) runs. In 
each run, individual agents were assigned a strategy (B,P) with each 
variable drawn at random from a [0,1] uniform distribution. No 
correlation between B and P is assumed. 
 
The possible grid-group scores are 
 
grid=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 
group=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 
 
and their permutations. The step between scores are arbitrarily 
chosen, but a finer resolution is probably not necessary.  
 
The groundwater model was set up using hydrogeological 
parameters characteristic of regional flow conditions in alluvial 
settings (see below). In each run, and after a 50-year burn-in period, 
we activated groundwater management scenarios (setting M,F≠0) 
with allocations arbitrarily set at 20% (to represent an extreme 
scenario of groundwater conservation). This assumption also 
reflects the fact that it is politically challenging to implement 
regulations in the real-world, and once regulations are introduced 
they are often hard to adjust over time. We then simulated the 
evolution of the system over 50 years.  
 
Four combinations of discrete values of M (monitoring) and F 
(fines) were chosen to develop four specific scenarios (see 
Extended Data Figure 4): 
 

• lax enforcement: M=0.1, F=0.1 
• low monitoring: M=0.1, F=0.9 
• low fines: M=0.5, F=0.1 
• full enforcement: M=0.5, F=0.9 

 
The biggest assumption here is M=0.5. The logic for not using a 
higher value for monitoring is because from our experience, it will 
be unlikely that the water authority will be able to monitor more 
than half of water users. The four scenarios chosen here are in our 
opinion sufficient to understand the general effects of regulation on 
the tipping points. 
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III.ii.b Is initialization 
always the same, or is it 
allowed to vary among 
simulations? 

To account for uncertainty and stochasticity, we report the mean 
and standard deviation of 100 independent realisations. In each 
realisation, agents are initialised with a strategy (B,P), with each 
component independently drawn at random from a [0,1] uniform 
distribution. No correlation between B and P is assumed 
 

III.ii.c Are the initial 
values chosen arbitrarily 
or based on data? 

Gross margin data was determined from published agro economic 
statistics (see Supplementary Table 1) 
 
Cultural parameters were determined from Wave 6 of the World 
Values Survey. 
 

 

III.iii Input 
Data 

III.iii.a Does the model 
use input from external 
sources such as data files 
or other models to 
represent processes that 
change over time? 

The model uses Grid-Group scores of cultural dimensions obtained 
from Wave 6 of the World Values Survey. 
 
Agroeconomic data for the three case studies (Supplementary Table 
1) is included in the code, but could be read from external data 
files. 

III.iv 
Submodels 
 

III.iv.a What, in detail, 
are the submodels that 
represent the processes 
listed in ‘Process 
overview and 
scheduling’? 

• Institutional submodel 
• Agent decision submodel 
• Economic submodel 
• Social submodel 
• Groundwater submodel 

 

III.iv.b What are the 
model parameters, their 
dimensions and reference 
values? 

See: 
 
• Supplementary Table 1 
• Extended Data Tables 1 & 2 
• Extended Data Figures 1, 3 & 4 
• Figure 1 
 

III.iv.c How were 
submodels designed or 
chosen, and how were 
they parameterized and 
then tested? 

See text below 

 5 

Institutional submodel 6 

Agents represent farmers in a groundwater basin where a primary crop is grown, e.g., cotton, 7 

almonds, wheat, etc. The problem is intentionally designed to be water-limited. Rainfall is 8 

not sufficient to irrigate crops and the underlying aquifer is used to supplement irrigation 9 

demands. Drought and overexploitation have also led to additional restrictions on 10 

groundwater withdrawals. To overcome this situation, the water authority imposes a cap on 11 

groundwater entitlements which applies equally to all agents. Capped groundwater 12 

withdrawals constrain farmers’ profits, which have to cut back from the ideal levels of 13 

irrigation that maximize crop yields and irrigated acreage.  14 

Groundwater allocations are implemented as a system of non-transferable entitlements or 15 

water rights. Our focus is exclusively on the role of social norms, thus we do not consider 16 

trading of these entitlements, as this would incorporate an additional and unnecessary level 17 
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of complexity to the analysis. Trading rules, however, could be easily implemented in our 18 

model.  19 

 20 

Farmers agents have the option of behaving opportunistically by pumping more water than 21 

the allocated limit (i.e., the cap imposed by the water authority). The consequences of their 22 

decisions are modelled with an institutional utility function, I, which notionally represents the 23 

proportion of gross margins forgone to pay fines when an agent is caught breaking the rules, 24 

according to the following relationship: 25 

ܫ 26  = ൜ 1݀݁ݐܽݎ݁݌݋݋ܿ	ݎ݁݉ݎ݂ܽ	݀݁ݐ݅݀ݑܽ	݊ܽ	݂݅			,1 −  ݃݊݅ݐ݂ܿ݁݁݀	ݐℎ݃ݑܽܿ	ݏܽݓ	ݎ݁݉ݎ݂ܽ	݀݁ݐ݅݀ݑܽ	݊ܽ	݂݅			,ܨ

 27 
Where F (0-1) is the severity of fines implemented by the water authority. The larger F is, the 28 

greater proportions of profits need to be used to pay a fine.  29 

 30 

Agent decision submodel 31 

 32 

An agent’s strategy has two dimensions: the propensity to defect (boldness, B), and the 33 

propensity to act in a punitive manner (punitiveness, P). B and P are continuous variables 34 

between 0 and 1. For instance, an agent with B=0.8 and P=0.8 is very likely to defect, but 35 

also very likely to punish other farmers breaching the seasonal allocation. On the other hand, 36 

an agent with B=0 and P=1 could be considered as a strong rule-follower. Many 37 

combinations are possible. The population averages of B and P define the presence or 38 

absence of a social norm (SN). Following Axelrod’s definition: a social norm of compliance 39 

emerges when B~0 and P~1 become a stable and long-term condition among agents.  40 

 41 

The emergence of a norm is modelled by allowing farmers modifying their strategies (B,P) 42 

based on the evolutionary principles of imitation and exploration. At the end of each growing 43 

season, agents look at their neighbours and copy (imitate) the most successful strategy of that 44 

year, using a fitness metric as a basis of comparison: we define this metric as the farmer’s 45 

performance index (PI, see below). If an agent scores higher than its neighbours, he maintains 46 

the current strategy for the following year. With a given probability (mutation), agents 47 

change their boldness and punitiveness level to a random value, overriding the imitation 48 

mechanism. In other words, agents occasionally explore completely new strategies (either B 49 

or P); with 50% chance is replaced by a random number drawn from a [0,1] uniform 50 

distribution. This heuristic is commonly known as “best-mean imitation”14. As in Axelrod’s 51 
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work, we do not impose any constraint or make any a priori assumption or correlation about 52 

the boldness (B) or punitiveness (P) of agents.  53 

The GCG simulates the evolution of norms of compliance with allocations as evolutionary 54 

process. The strength of a norm is the difference between the population averages of B and P. 55 

If B is significantly higher than P, or if there is not much difference between them, we have a 56 

weak norm (most agents are pumping more water than they are supposed to, and not 57 

punishing breaches). On the other hand, when agents consistently select strategies having 58 

high P and low B, we can say that a norm of compliance has emerged. The GCG can be used 59 

to investigate the stability, growth and decay of these norms and the different conditions 60 

under which this happens.  61 

The consequences of agent decisions and interactions are captured and quantified in the 62 

farmer’s performance index (PI=E*I*S). The goal of formulating PI=E*I*S is to construct a 63 

simple index that captures the interaction of three broad indicators of farmer success: 64 

economic profitability (E), good relationships with the water authority or institution (I), and 65 

prolific social interactions (S). Each indicator is represented (quantified) by a utility function 66 

(see above and below). For generality, we have kept the functional forms of utility as simple 67 

as possible. Supplementary Figure 3a illustrates the interaction between any two agents, 68 

showing the benefits (+) and costs (-) that apply in the neighbourhood of a breach.  69 

Another way to think about the dynamics of the GCG is to consider that each growing season 70 

farmers simultaneously play two games: defect-or-not and punish-or-not. The former is 71 

driven by the farmers’ boldness B, the latter by their punitiveness P. Supplementary Figure 72 

3b represents the three components of the farmer score (economic, institutional, social) as 73 

‘forces’ pulling agent decisions in different directions. The objective of our model is to 74 

propose mechanisms that ‘pull’ the decisions of the majority of farmers towards compliance.  75 

The main assumption of our agent’s PI is equal weighting of the three indicators to produce 76 

the final index. Equal weighting is the most parsimonious approach, as it avoids introducing 77 

complexity (weight coefficients) without clear justification22. Practice tends to support this 78 

method, unless there are compelling reasons for differential weighting: the burden of proof 79 

should be on the differential weighting, and equal weighting should be the norm23. Also, 80 

equal weighting is used in a number of highly reputable social indices, such as the Human 81 

Development Index (United Nations), the Political Rights Index (Freedom House), the Basic 82 

Capabilities Index (Social Watch), the E-Government Index (United Nations), and the 83 
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Fragile States Index (Fund for Peace), among others 24. Other approaches to assigning 84 

indicator weights may be implemented—such as theoretically categorised, schematic, or 85 

variable weights 23. Although application of these methods is beyond the scope of this work, 86 

users of the GCG could derive and test other forms of weighting (if data is available) on a 87 

case-by-case basis.   88 

 89 

Economic submodel 90 

 91 

We assumed that prior to regulation, farmers irrigate crops at full nominal water requirement 92 

(Extended Data Table 1). For simplicity, we also assumed that farmers do not engage in 93 

deficit irrigation, meaning that under pumping restrictions they are forced to reduce their 94 

irrigated acreage. If a farmer (agent) cooperates, it only irrigates a fraction of land equivalent 95 

to the pumping allocation (i.e., if the allocation is 20% of the full license, the farmer irrigates 96 

20% of his land). If the agent defects, it pumps a fraction of illegal water proportional to his 97 

boldness. For example, for a 20% allocation, a defecting farmer (agent) with boldness B=0.1 98 

would irrigate 20%+80%*0.1=28% of his land; one with boldness B=0.8 would irrigate 99 

20%+80%*0.8=84% of his land, and so on.  100 

 101 

We calculated gross margin budgets (Extended Data Table 1) using reported and published 102 

agro-economic statistics for Bollgard II R cotton in the Murray-Darling basin (2015 103 

Australian Cotton Production Manual, http://www.cottoninfo.com.au/publications), almonds 104 

in the southern Central Valley (UC Davis Agricultural and Crop Economics; 105 

http://coststudies.ucdavis.edu), and the wheat-rice rotation in the Punjab25,26. Gross margins 106 

were calculated as total revenue minus total costs, not including the energy costs of pumping 107 

groundwater. Pumping costs were calculated and incorporated to the agent objective function 108 

at simulation runtime using depths to water table from the groundwater submodel, based on 109 

the equation for power consumed by a centrifugal pump set: 110 

	ܥܲ 111  = ௘ܲ݃(ܹܴ)ߟܪ 	 
 112 

Where PC is the pumping cost in US$/ha, Pe is the price of electricity in US$/kWh, g is 113 

gravity, WR is the crop’s water requirement in ML/ha, and H is the dynamic pumping lift of 114 

the pump in m.  115 

 116 
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The current version of the model could be extended to include a more detailed description of 117 

the farm enterprise (e.g., crop rotations, deficit irrigation, etc.). Here however, we develop a 118 

simple model with flexible and customizable input data, which can be used as a basis for 119 

applications in specific farming contexts.  120 

 121 

We also assume that decisions are only related to water pumping and not crop choice. 122 

Farmers may indeed choose to switch to a different crop when allocations are reduced. Yet, 123 

this option is not always available to water users. This is the case, for example, with tree 124 

crops such as almonds, cherries, oranges, grapes etc. (important in California) and many 125 

others. These crops are a long-term investment: they take many years to grow and reach their 126 

optimal yields and become profitable to farmers. Soils and climate can also limit crop choice. 127 

Specialisation can also play an important role in cases where farmers have heavily invested 128 

in crop-specific machinery (e.g., cotton ginners, wheat reapers/binders, etc. can cost 129 

hundreds of thousands of dollars).  130 

 131 

Including crop choice to our model would add an additional layer of complexity and make 132 

our goal of revealing factors that trigger compliance more difficult. For this reason, the 133 

current version of the GCG only takes a strictly limited subset of variables into account 134 

which are relevant to our research questions. The subset of variables/drivers chosen are 135 

essentially those identified by previous studies as key drivers of human cooperation: cultural 136 

values, social norms, bounded rationality, altruistic punishment, etc.12,13,27,28.   137 

 138 

Social submodel  139 

 140 

Social utility function S provides a numeric representation of individual benefits and costs 141 

that agents derive from their interactions. S was constructed based on the following 142 

requirements: 143 

 144 

• S allows agents’ utilities to be put on a common scale and compared. 145 

• S follows a Cobb-Douglas functional form which is commonly used in welfare 146 

economics and the construction of social indices; see Happy Planet Index 147 

(http://happyplanetindex.org) and the Human Development Index 148 

(http://hdr.undp.org/en)) 149 
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• The intrinsic cost of reporting non-compliant neighbours decreases with increasing 150 

grid score 22, and increases each time the agent chooses to report a non-compliant 151 

neighbour. 152 

• The intrinsic cost of developing a bad reputation decreases with increasing group 153 

score22, and increases each time the agent is seen by others extracting water illegally 154 

(a neighbour might see a breach, but choose not to report it; in this case, the 155 

offender’s reputation is still affected) 156 

 157 

Each season, agents face the decision of whether to cooperate with the allocations (pump a 158 

fraction of their entitlement as required by the water authority) or to defect (pump more than 159 

the allocation). Each opportunity to defect comes with a probability of neighbouring farmers 160 

seeing that breach and reporting it to the water authority. This opportunity is represented by 161 

the probability of punitiveness Prob(P). Prob(P) is drawn from a random uniform distribution 162 

on the interval [0,1], at every turn for each agent. When P < Prob(P) an agent chooses to 163 

punish a defector. Similarly, there is a probability that an agent with defect, Prob(B). If B < 164 

Prob(B) the probability of defecting is higher than the agent’s boldness and therefore it 165 

decides to defect, otherwise it cooperates. We quantify social utility using the following 166 

relationship: 167 

 168 ܵ = (1 −  ௡݌ݑ݋ݎ௠݃(݀݅ݎ݃

 169 
Where m = number of times an agent reports a neighbour that takes water illegally; n = 170 

number of times an agent is seen taking water illegally 171 

 172 
In this functional form of S, grid and group are the normalised (0-1) mean grid group scores 173 

from Extended Data Figure 3 The scores were normalised based on the minimum and 174 

maximum scores in the cohort. 175 

 176 
Groundwater flow submodel  177 

 178 

The coupled agent-based groundwater model was developed using FlowLogo21 (Extended 179 

Data Fig. 2), a software platform developed by the authors specifically for this purpose. The 180 

groundwater submodel represents a 10x10 km basin, discretised into 40x40 cells. The 181 

dimension of each cell is 200 m. Model boundary conditions are defined by a no-flow 182 

boundary to the North and South, and constant head boundary cells to the East and West; 183 

setting head values to create an East-West gradient of 1/1,000 representing typical conditions 184 
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in regional aquifer systems. Underlying this basin is a semi-confined sand aquifer of 50 m 185 

thickness, hydraulic conductivity K=10 m/d and storativity S=1e-4. The model is transient 186 

with a time step of six months. We used a steady-state run with no pumping stresses as the 187 

initial condition for each simulation.  188 
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ODD+D Model Documentation Figures 248 

 249 

Supplementary Figure 1 | GCG main processes. (top) schematic of agent dynamics (bottom) scheduling 250 
of agent and groundwater processes.  251 
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 252 
Supplementary Figure 2 | Agent-based implementation of the GCG. User interface for one of our case 253 
studies. Model window shows time series and histograms coupled social-groundwater output; sliders and 254 
switches to set base parameters for agents; controls for cultural variables and policy intervention 255 
mechanisms.  256 
  257 
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 258 
 259 

 260 
 261 

 262 
 263 
Supplementary Figure 3 | Socio-economic dynamics in the GCG represented as ‘forces’ pulling 264 
agent decisions in opposite directions. 265 
  266 
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 267 
 268 

 269 
Supplementary Figure 4 | Functional form of the social utility function of agents in the GCG. 270 
  271 
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272 
Supplementary Figure 5 | Schematic of compliance and enforcement strategies of a typical water 273 
authority29-31 and functional form of the institutional utility function of agents in the GCG. 274 
 275 
  276 
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277 
Supplementary Figure 6 | Functional form of the economic utility function of agents in the GCG. 278 
 279 
 280 
 281 
  282 
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ODD+D Model Documentation Tables 283 
 284 
 285 
Supplementary Table 1 | Agro-economic data for the three case studies. 286 
 287 

* gross margins do not include electricity pumping costs (computed at runtime, based on drawdowns obtained from the 288 
groundwater submodel) 289 
† 2015 Australian Cotton Production Manual; http://www.cottoninfo.com.au/publications 290 
‡ UC Davis Agricultural and Crop Economics; http://coststudies.ucdavis.edu 291 
§ see25,26 292 


