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Appendix A: Model Overview, Design Concepts, and Details 

Overview 

Model Software: Powersim Studio 10 Expert  

Purpose: The purpose of this model is to evaluate the impact of seasonal forecasts on a farmer’s net 

agricultural income. The net income is a function of the crops planted, actual seasonal weather, and 

market conditions. The farmer being simulated is a simplified representation of farmers in System MH.  

Entities, state variables, and scales: The entity in this model is an adaptive farmer who uses seasonal 

forecast information to select crops. To understand the impact of the seasonal forecasts, the net income 

of the adaptive farmer is compared to a farmer who uses climate information instead of seasonal 

forecast information to select crops (hereafter referred to as “climate” farmer) and a farmer who plants 

only rice (hereafter referred to as “rice-alone” farmer) every season.  

Both the climate and adaptive farmers are characterized by heuristics, wherein the farmer’s experiences 

over time influence their future decisions. Based on findings from games played in the field, we also 

simulate the influence of education on the adaptive farmer’s net income; a farmer with less than grade 

9 education demonstrates more randomness in their crop selection decision. For all three planting 

approaches, the decisions are not constrained by a farmer’s bank balance and are assumed to occur 

uniformly across the farmer’s field, hypothetically assumed to be one acre. The three planting 

approaches were simulated for three climate scenarios: 1) climate consistent with historical conditions, 

2) drier climate, and 3) a wetter climate.  

The model is calendar-independent with each time step representing one dry (locally referred to as 

“yala”) season. The simulations are run for 64 dry seasons, which occur once per year. There is no spatial 

distribution of fields, farmers, or weather within the model.  

An overview of the model’s components and layout in Powersim are provided in Figures A1 and A2 

respectively. 

Process overview and scheduling: The model actions are executed in the following order each season: 

1. Season begins (and the adaptive farmer receives a weather forecast)  

2. Farmer selects a crop based on their planting approach  

3. Reality ensues with actual weather and market conditions 

4. Farmer obtains a net agricultural income  

5. Farmer updates their rationale for planting given actual weather and market experiences  

6. New season begins 
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Figure A1. Influence diagram of hydrological (dashed blue), economic (dashed purple), and farmer 

behavior (dashed orange) components of the system dynamics model. The two green arrows note the 

updating process of the farmer’s perceived effectiveness (i.e., prior experience) of the adaptation 

practice of crop diversification at the end of each season. 
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Figure A2. Snapshot of simulation set-up in Powersim Studio 10 Expert, a system dynamics software.    

Design Concepts 

Emergence and Observation: The model’s primary output is net agricultural income over time. 

Important secondary outputs include farmer’s trust in forecast and trust in the market; these outputs 

emerge from how the farmer’s planting decision compares to the season’s realized weather and market 

conditions. Our analysis focuses on the impact of different planting approaches and climate conditions 

on the outputs of interest.  Even though changes in forecast and market trust do not influence the rice-

alone farmer’s planting decision, these outputs are generated for comparison purposes. Outputs from 

Powersim were written to Excel files and processed in R.  

Adaptation and Learning: The rice-alone farmer does not adapt their decisions between seasons. The 

adaptive (and climate) farmer, on the other hand, updates their rationale for crop selection based on 

their experiences with the weather and market. If the farmer’s trust in the forecast or market decreases 

below a threshold, the farmer becomes risk averse. Specific learning traits of the adaptive farmer are 

described in detail below.  
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Objectives: The farmer’s objective is to maximize their net agricultural income. However, this objective 

is not explicitly incorporated into their planting approaches except implicitly as part of the risk aversion 

behaviors of the adaptive farmer.   

Prediction: The rice-alone farmer predicts the return for their crop is constant, which is reflective of the 

current price floor policies for rice in Sri Lanka (Herath et al., 1982). The climate and adaptive farmers 

predict their crop returns will be at least 80% of their maximum return; if below this value, then their 

trust in the market decreases.   

Sensing: The climate and adaptive farmers are assumed to have perfect knowledge of the climate 

conditions and seasonal forecasts respectively. These farmers are also assumed to have perfect 

knowledge of the maximum returns for crops but not the exact returns for soybean or onions.  

Interaction: Although game findings indicate that farmer behaviors changed when they interacted with 

fellow players (Figure A3), this dynamic is outside the scope of model analysis. Therefore, there are no 

interactions in the model.  

 

Figure A3. Impact of collaboration on farmer crop selections of A) rice vs soybean as a function of wet 

season probabilities and B) rice vs onion as a function of dry season probabilities. Lines represent average 

values while shaded regions represent 95% confidence interval for a LOESS fit to the data. When there is 

collaboration (i.e., condition is true) in rice-soybean comparison (A), farmers were more likely to plant 

soybean over a wider range of wet season probabilities. As for rice-onion comparison (B), when there is 

collaboration, farmers were more likely to plant rice over a larger range of dry season probabilities.  

Stochasticity: There are two main stochastic components of the model: 1) weather and 2) market 

returns for soybean and onions. Each model run is initiated with one of three climate conditions from 

which the forecast and subsequently the weather are randomly generated (see subsections on “Climate 

scenarios” and “Actual weather”). The market returns for soybean and onions are randomly generated 

from a uniform distribution of a range of returns (see subsection on “Market return”).  

Collectives: There are no collectives in the model.  
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Initialization: Each model run is initialized with one of the three climate scenarios. All three farmers 

begin with net agricultural income of 0, 80% trust in the forecast, and 70% trust in the market; initial 

trust levels were chosen based on impressions gained from interviews in the field.  

Input Data: In addition to the initialized values, the values in Table A1 are default parameters used in 

the model set-up across the climate scenarios. 

Table A1. Default parameter values used in model simulation 

Parameter Value 

Forecast skill  70% 

Threshold at which trust in forecast is lost  30% 

Threshold at which trust in market is lost  50% 

Ratio of actual return to expected return at which farmer’s trust in market is updated  0.8 

 

Details 

Climate scenarios: The climate scenarios are binned in deciles across probabilities that rainfall during 

the season is dry, normal, or wet. A general trend towards drought at our study site has been observed 

by Gunda et al. (2016) but Seo et al. (2005) note that the dominant climate change being observed at a 

seasonal level in Sri Lanka is increased variability. Therefore, the three climate scenarios considered in 

the model are:   

1. Historical climate during the dry season: 40% dry – 40% normal – 20% wet  

2. Drier climate: 50% dry – 40% normal – 10% wet 

3. Wetter climate: 30% dry – 40% normal – 30% wet  

The historical probabilities were determined from assessing drought indices at Anuradhapura using 131 

years of data generated by Gunda et al. (2016) (Figure A4). No extreme conditions (i.e., floods and 

droughts) are considered in the model. The categorical approach (i.e., dry, normal, and wet) is 

consistent with field findings, which indicate that local water managers generally think about water 

availability in categorical rather than quantitative terms (Burchfield and Gilligan, 2016). 
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Figure A4. Percentage of months between 1881 and 2010 that were classified as wet, normal, and dry 

conditions based on the Palmer Drought Severity Index values at Anuradhapura. Data generated by 

Gunda et al. (2016). 

Seasonal forecasts: For a given climate scenario, a seasonal forecast is generated by randomly sampling 

the corresponding climate probabilities.  

Actual weather: Actual weather is generated by randomly sampling the seasonal forecast but is 

moderated by the forecast skill. For a forecast skill of 70%, for example, the actual weather generated is 

drawn (on average) from the generated forecast probability 70% of the time and from historical 

conditions (regardless of the actual climate) the remaining 30% of the time. For a forecast skill of 100% 

then, the actual weather generated is drawn from the generated forecast probability 100% of the time. 

Crop options: The adaptive (and climate) farmer has the option of planting rice, soybeans, onions, or 

leaving their field fallow.  

Crop decisions: As aforementioned, both the climate and adaptive farmers select crops based on their 

ongoing experiences with the weather and market. Based on the game findings (Figure A5), both 

farmers use the following logic to translate the ternary weather probabilities to actual crop decisions:  

 If the probability of wet weather is >=70%, plant rice 

 Else if the probability of wet weather is <30% and the probability of dry weather is >=60%, plant 

onions or leave field fallow 

 Else, plant soybeans 

Based on the ADAPT-SL survey data, the farmer chooses to plant onions (instead of leaving their field 

fallow) 75% of the time. If the farmer’s planting decisions do not match the actual weather, they lose 

trust in the forecast. If the farmer’s trust in the forecast drops below a threshold (default: 30%), then 
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the farmer exhibits risk averse behavior by just planting rice – a behavior observed and documented in 

many regions of South Asia, including Sri Lanka (Thiruchelvam, 2005; Hertzog et al., 2014; Jain et al., 

2015). This model set-up also reflects our ADAPT-SL survey findings that as a farmer’s predictability of 

rainfall decreased, they were less likely to plant non-rice, or other food crops (OFCs). Similarly, if the 

farmer’s market return for a crop is not at least 80% of their expectations, they lose trust in the market. 

If the farmer’s trust in the market drops below the threshold, they exhibit risk averse behavior by 

planting rice instead of soybean and leaving fields fallow instead of planting onions (see subsection on 

“Trust heuristics”).  

 

Figure A5. Planting decisions as a function of weather probabilities for A) dry season, B) normal season and, 

C) wet season. Lines represent average values while shaded regions represent 95% confidence interval for a 

LOESS fit to the data. Generally, farmers preferred to plant soybean except when the probability of wet or 

dry weather is high, in which case farmers opted to plant rice or onions over rice respectively.  

Crop yield: Crop yields are binned into three categories: successful, normal, and poor. We assume that 

the farmer has the necessary knowledge to plant and maintain their crops and that the crop yields are 

not biophysically constrained (e.g., by soil type) on their hypothetical field. Therefore, the crop yields are 

purely a function of water availability. Both rice and soybean require more water for a bountiful crop 

while onions perform better in drier conditions due to root rot issues (Brouwer and Heibloem, 1986). So 

assuming that Huruluwewa is at average capacity, wet weather is needed for successful rice and 

soybean crops while dry weather is needed for a successful onion crop (Table A2).  

Table A2. Crop yields as a function of weather conditions.  

 Dry Normal Wet 

Rice Poor Normal Successful 

Soybean Poor Normal Successful 

Onion Successful Normal Poor 

Fallow None None None 
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Education: Our game results show that farmers with more education (i.e., greater than grade 9) moved 

more quickly towards planting rice under increasingly wet probabilities of weather (Figure A6). 

Therefore, we created a binary education variable that only impacts the implementation of the adaptive 

farmer’s planting approach. If the farmer’s education is less than grade 9, then there is some variability 

in their adaptive behavior; half of the time, the farmer makes a decision following the rationale outlined 

above and the other half of the time, the farmer chooses an option at random with a preference for 

planting rice 70% of the time and one of the other options (i.e., soybean, onion, or fallow) the remaining 

30% of the time. This heavier weighting towards rice in the stochastic component reflects the positive 

association between education and predictability of rainfall in the ADAPT-SL survey data; our data shows 

that farmers who are less educated were less likely to state that they could predict rainfall; the ADAPT-

SL survey data indicates that a farmer’s predictability of rainfall is related to the likelihood the farmer is 

to plant OFCs (see subsection on “Trust heuristics”).  

 

 

Figure A6. Impact of education on farmer crop selections. Lines represent average values while shaded 

regions represent 95% confidence interval for a LOESS fit to the data. Less educated farmers planted 

more rice at lower probabilities of wet season whereas more educated farmers moved more quickly 

towards planting rice as the probability of a wet season increased. 

Market return: Market return is modeled as a function of crop yield and market conditions. Consistent 

with current Sri Lankan policies, we model rice with a fixed return while returns for soybean and onions 

are market-dependent; market returns for soybean are less variable than those for onions given the 

presence of futures contracts (whereby farmers enter agreements with businesses to buy the crop at an 

agreed price) in System MH. In the model, the returns for soybean and onions are randomly drawn from 

a uniform distribution of the ranges specified in Table A3. The market relationships in Table A3 were 

established based on aggregate data for costs (including both labor and materials) and returns from 

agricultural statistics books (Department of Agriculture, 2010-2011).   
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Table A3. Crop costs and returns (x 30,000 Sri Lankan Rupees), normalized per acre (Source: 

Department of Agriculture, 2010-2011). Crop returns are a function of crop yield. 

Crop planted Cost Returns 

Successful Normal Poor 

Rice 1 3 2 1 

Soybean 2 3-5 2-4 1-3 

Onion 5 5-15 4-12 3-7 

Fallow 0 0 0 0 

 

Trust heuristics: We use a cognitive model for trust in our simulation; specifically, trust is as an 

accumulation of experiences over time and can influence behavior in the future (Earle and Siegrist, 

2008; Hoogendoorn et al., 2012). Trust heuristics are an important aspect of farmer behavior since the 

farmer’s efficacy beliefs/perceived effectiveness of a particular behavior are strongly correlated with 

their intent to perform that behavior in the future (Esham and Garforth, 2013; Truelove et al., 2015). 

The rice-alone farmer is not influenced by heuristics in the model; for the climate and adaptive farmers, 

we assume that there is an immediate feedback at the end of each season for the next season’s 

decisions.  

Trust in the forecast and trust in the market are modeled as percentages bounded between 0 and 100 

(Sutcliffe and Wang, 2012), with the specific trust level representing the probability that the farmer 

decides to rely on their rationale; this approach is similar to the concepts of graded trust and subjective 

probability discussed in Lorini and Demolombe (2008) and Castlefranchi et al. (2003) respectively. At the 

end of each season, the farmer’s trust in the forecast is updated by their experiences using Eq. [1]: 

𝑇𝑟𝑢𝑠𝑡𝑡+1 = 𝑇𝑟𝑢𝑠𝑡𝑡 + 𝐼𝑡𝐴𝑡,  [1] 

where 𝑡 is a season number, 𝐼𝑡 is the increment for trust change in forecast, and 𝐴𝑡 is the seasonal 

adjustment; recall that the farmer is initialized with 70% trust in the forecast. The increment for trust 

change is calculated each season as the minimum difference between the actual trust level and the 

boundary conditions (0% and 100%). By making the increment a function of the actual trust levels, our 

model captures the basic assumption that people with high trust are more likely to be tolerant of 

failures/bad experiences (Jonker and Truer, 1999; Sutcliffe and Wang, 2012).  

The seasonal adjustment value, 𝐴𝑡, is based on prospect theory principles that people generally value 

losses more than gains (Kahneman and Tversky, 1979; Tversky and Kahneman, 1981). Using the farmer’s 

crop yields as the reference point for weather observations, the adjustments were defined as follows: 

 If their crop has a successful yield: +6% 

 If their crop has a poor yield: -10%  

This approach is similar to the methodology employed by Ziervogel et al. (2005), where farmers lost 

trust in the forecast when their crop yields were poor. If the farmer’s trust in the forecast drops below a 

threshold of 30%, then the farmer reverts to the risk averse behavior of planting rice. This model set-up 
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is consistent with our ADAPT-SL survey findings that as a farmer’s predictability of weather decreases, 

they are less likely to plant OFCs. The farmer continues to update their heuristics regarding weather 

predictability (relative to their crop planted) throughout the simulation.  

The heuristics associated with market trust also follow Eq. [1]. Specifically, the next season’s trust is 

influenced by the current season’s actual returns and the increment of change is a function of the actual 

trust level and the minimum distance to the boundary conditions. Furthermore, the adjustments each 

seasons are based on the farmer’s expected return for each crop (assumed to be 80% of the maximum 

return possible for soybeans and onions as the default): 

𝐴𝑡 = 

{
 

 +6%             𝑖𝑓
𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛
≥ 0.8

−10%             𝑖𝑓
𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛
< 0.8

 

If the farmer’s market trust falls below the threshold of 50%, then they lose trust in the market and opt 

to plant rice instead of soybean and leaving their field fallow instead of planting onion. Again, similar to 

forecast trust heuristics, the farmer continues to update their market heuristics regarding market 

predictability throughout the simulation. 
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