WecondcutalsilWv n

!

"#\$!%&\$'()*+,\$-!./-\$0!1%*.2!(#+(!3\$!-\$4\$0/5\$-!(/!\$6+78'\$! (#\$!-9'+78:,!/;!#\$<-!&</3(#! 8,!5+<(!/;!+!0+<&\$<!,(=-9!(#+(!\$6+78'\$,!(#\$!:/=50\$9!+78:,!/;!#\$<-,!+'-!#/=,\$#/0-! -\$7/&<+5#9!8'!%;<8:+'!5+,(/<+0!,9,(\$7,>%*.,!+<\$!:/77/'09!=,\$-! (//0,!(/!\$6+78'\$!(#\$! -9'+78:,!/;!:/750\$6!,9,(\$7, ?!@=(!(#\$9!:+'!+0,/!@\$!=,\$-!(/!,87=0+(\$!-\$7/&<+5#8:!-9'+78:,! 8'!3#8:#!,(/:#+,(8:8(9!50+9,!+'!875/<(+'(!</0\$>A\$!=,\$-!(#\$!7/-\$0!(/!\$6+78'\$!(#\$!</0\$!/;! ,:+0\$!1#\$<-!,8B\$2!,(/:#+,(8:8(9!18'!7/<(+08(9!+'-!;\$<(**\$2)**\$'(#\$<-!&</3(#!8'!%;<8:+'!5+,(/<+0! 9,(\$7,>!!

!

 $\begin{array}{l} \mathsf{A} : @=80(!(\#\$!7/-\$0!8'!C\$(D/\&/!14\$<,8/'!E>FEA280\$',G9!HII12!+'-!3800!5=@08(\#\$!7/-\$0!\\ +(!J5\$'\%^*.!1 \underline{333>/5\$'+@7>/<\&}21K+',,\$'!\$(!+0>!LFIFA2!A\$!#+4\$!<\$N=\$,(\$-!(\#+(!/=7/-\$0!)))\\ @\$\$<(8;8\$-!@9!(\#\$!C\$(3/<G!;/<!O/75=(+(8/'+0!./-\$08'\&!8'!(\#\$!P/:8+0!+'-!Q:/0/\&8:+0!)))\\ @\$\$<(8;8\$^{-}!@9!(\#\$!C\$(3/<G!;/<!O/75=(+(8/'+0!./-\$08'\&!8'!(\#\$!P/:8+0!+'-!Q:/0/\&8:+0!))))\\ P:8\$':\$,!10/.PQP!C\$(21R/008',!\$(!+0>!LFH32!7/-\$0!-\$,:<85(8/'!;/00/3,!(\#\$!JTT!)))\\ 1J4\$<48\$3?!T\$,8\&'!:/':\$5(,?!T\$(+80,2!5</(!:/01U<877!\$(!+0>!LFFVW!U<877!\$(!+0>!(\mu+1/2))))))\\ 5</48-\$!+!:0\$+<!+'-!:/75<$\#\$',84\$!-\$,:<85(8/'!);!/=<!7/-\$0!@$0/3>!! \\ 1 \end{array}$

 $\begin{array}{l} X'!-\$, 8\&'8'\&!/=<!\%^*.!3\$!=,\$-!+!, (<+(\$\&9!:+00\$-!5+((\$<)/<8\$'(\$-!7/-\$08'\&!1YJ.2!8'!3\#8:\#!) \\ (\#\$!\&/+0!8,!(/!=,\$!7=0(850\$!5+((\$<',!/@,\$<4\$-BH,(/<+0!,9,(\$7,!/!&=8-\$!(\#\$-\$,8\&'!)',!(\#\$!)) \\ 7/-\$0!\ 1U<877!\$(!+0>!LFBE$!-<84-!(\#\$!7/<(+08(9?!;$<(808(9?!+'-!/;;(+G\$!<+(\$,!;</7!+!))) \\ <\$48\$3!/;!(\#\$!08(\$<+(=\%\) + @09?!T+\#0!+'-!Z[/<(!HI\VW!A+\&^{+}+<?!T8+00/?!+'-!P+9\$<,!HIMVW!) \\ P=(($<!HIM\2J=<!7/-\$0!8,!<\$0+(84\$09!,8750\$!@=(!:+5(=<\$,!(\#\$!G\$9!-9'+78:,!/!))) \\ \#\$<-,!8'!\%; &: +!5+, (/<+0!,9,(\$7,!8!!3\#8:\#!\#$<-,!:'/,8,(,!/;!+'87+0,!8'!-8;;$<$'(!+&\$!+'-!)) \\ ,\$6!:0+,,\$,!1\$>&>?!:+04\$,?!\#\$8;\$<,?!@=00/:G,?!:/3,?!@=00,2!(\#+(!\$+:\#!\#+4\$!-8;;$<$'(!7/<(+08(9!+);(+G\$!<+($,>!"\#\$!7/-$0!8,!'/')),5+(8+0]!3\$!7/-$0!/'09!(\#\$!\#$<-!+'-!'/(!(\#\$!\$'4))) \\ &:(+G\$!<+(\$,>!"\#\$!7/-$0!8,!'/'),5+(8+0]!3\$!7/-$0!/'09!(\#\$!\#$<-!+'-!'/!(!(\#\$!\$'4))) \\ +2'-!(\#$<$!+<$!(\#=,!'/!-$',8(9))-5'-$'(!!$$-@+:G,>!!) \\ \end{array}$

 $\begin{aligned} yxasWuc^{!}"#8,!7/-\$0!3+,!-\$,8\&'\$-!(/! \$6+78'\$!(\#\$!-9'+78:,!/;!:+((0\$!\#\$<-,!8'!\%;<8:+'! 5+,(/<+0!,9,(\$7,?!8'!5+<(8:=0+<!(/!$6+78'$#!(#$!-9'+78:,1/;!:+(0$!!#$<-,!8'!%;<8:+'!5+,(/<+0!); +'-!,(/:#+,(8:8(9!18'!7/<(+08(9!+'-!;$<(808(9(1$2!/'!#$<-!&</3(#!8'!%;<8:+'!5+,(/<+0!)); +'-!,(/:#+,(8:8(9!18'!7/<(+08(9!+'-!;$<(808(9(1$2!/'!#$<-!&</3(#!8'!%;<8:+'!5+,(/<+0!)); +(108(9!+'-!;$<(808(9(1$3)!)); +(.108(9)!)$

n

yaWtcuunWfcaflc(npvenutPcexolv)rl#\$!,87=0+(8/'!,(+<(,!8'!(#\$!<+8'9!,\$+,/'>!X'!(#\$!<+8'9!,\$+,/'+'87+0,!8':<\$+,\$!/'\$)9\$+<!8'!+&\$!+'-!:/3,!#+4\$!+!:#+':\$!(/!<\$5</-=:\$>!X'!(#\$!-<9!,\$+,/'!+'87+0,!#+4\$!:#+':\$!(/!-8\$!/<!@\$!,/0->!%'87+0,!8'!-8;;\$<\$'(!+&\$!+'-!,\$6!:0+,,\$,!1\$>&>?!

Parameter	Р	ΔΡ	Quality of knowledge sources	Source type	S-	S+
Calving Rate	70%	3.5	4	Literature review	28874959	116837489
Mortality - Calves	21.96%	1.098	4	Literature review	111673786	48298399
Mortality – Male calves	21.96%	1.098	4	Literature review	111673786	48298399
Mortality - Heifers	6.06%	0.303	4	Literature review	78063905	60835680
Mortality - Bullocks	6.06%	0.303	4	Literature review	78063905	60835680
Mortality - Cows	5.72%	0.286	4	Literature review	81032393	64232950
Mortality - Bulls	5.72%	0.286	4	Literature review	81032393	64232950
Mortality - Elderly Cows	69.50%	3.475	4	Literature review	65075854	69422306
Offtake Rate- Calves	0.10%	0.005	3	Sutter (1987)	78019927	67153795
Offtake Rate- Male calves	0.30%	0.015	3	Sutter (1987)	75546187	7166751

Table 1: Sensitivity of final herd size to changes in model parameters

Offtake Rate- Heifers	3.70%	0.185	3	Sutter (1987)	71771443	74490725
Offtake Rate- Bullocks	5.20%	0.26	3	Sutter (1987)	73050458	75586500
Offtake Rate- Mature Cows	1.40%	0.07	3	Sutter (1987)	84297730	67934398
Offtake Rate- Bulls	2%	0.1	3	Sutter (1987)	65270088	72852559
Offtake Rate- Elderly Cows	0.70%	0.035	3	Sutter (1987)	72445766	70606037
Initial Herd Size	100	5	1	Simulation	63815162	60791702

References Cited

Dahl, Gudrun, and Anders Hjort. 1976. *Having herds: pastoral herd growth and household economy, Stockholm Studies in Social Anthropology*. Stockholm (Sweden): Department of Social Anthropology, University of Stockholm.

- Railsback, Steven F., and Volker Grimm. 2012. *Agent-based and Individual-based modeling: a practical introduction*. Princeton (NJ): Princeton University Press.
- Sutter, John W. 1987. Cattle and inequality: herd size differences and pastoral production among the Fulani of northeastern Senegal. *Africa* 57 (2):196-218.