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1 LAMDA - Model Description

The simulation model LAMDA (Learning Agents for Mechanism Design Analysis) will be de-
scribed along the ODD protocol [3, 4]. The ODD protocol (Overview, Design concepts and
Details) is a standard developed for the specification of simulation models. This guides the



modeler through the description and helps to prevent the omission of important details. Fur-
thermore, the communication of simulation models is facilitated.

The setup of the ODD protocol follows the logic overview, design concepts, and details [3,
p.117]. The first part, overview, provides the most important information about the simulation
model. Next, design concepts describe the theoretical background, modeling approaches, and
concepts applied in the given simulation model [4, p.9]. Finally, more detailed (in particular
technical) information about the simulation model is given in the third part.

1.1 Overview

This section gives an overview of the main model elements. The first subsection summarizes the
purpose of the model. The entities, state variables and scales of the simulation model LAMDA
are described afterwards. Finally, the last subsection describes the main process and scheduling
of the model.

1.1.1 Purpose

The main purpose of the model is to assess the influences of varying cognitive abilities of the
decision maker on the theoretically well-founded truth-inducing effect of the Groves mechanism
[5, 6]. The study focuses on the effect of the combination of different information states and
ways of human learning, represented by learning models for agent-based simulation. The strate-
gies chosen by the agents are evaluated with regard to the individual payoff achievement and
reporting behavior. By this, the individual success as well as the truth-inducing effect under the
respective cognitive influence can be analyzed and compared. In the end, the robustness of the
Groves mechanism against not perfect rationality and agent interactions should be assessed.

1.1.2 Entities, state variables and scales

For the implementation of the model, the agent concepts and processes have to be transferred
into quantified variables and values. This section describes the four entities division manager
agent, headquarter, groves mechanism, and observer, and their variables of the LAMDA simu-
lation model. Furthermore the variable types and scales are described. These provide the basis
for the subsequent implementation.

Table 1 provides an overview of the variables and scales of the entity division manager
agent. For clarity, the variables are grouped in scenario variables, decision variables, and learn-
ing model. The scenario variables specify the given scenario by defining the capacity thresholds
for the divisions (optCapacity and mazCapacity) and the value of productivity reduction (re-
ductProd).

The decision variables are needed for the decision process of the division managers and change
in every simulation step. In the simulation model, two division manager agents are implemented,
according to the experimental setting. Their profit-maximizing choice about the productivity
value report (repProd) is the central process in the model. The prodValue is the divisions’ real
productivity value in the given round. Based on the reports, a resource allocation (variable
resourcesAllocated) is calculated. The resource allocation and real productivity value are the
basis for the profit achieved by the divisions, followed by a compensation, given as feedback to
the division manager decision by the headquarter entity, determined by the Groves mechanism.
The reported productivity of the opponent (repProdOpp) is given as information to the agent
in the end of the round.



Table 1: State variables and scales of the division manager entity

Variable Description Scale
Scenario variables
optCapacity Optimal capacity (productivity threshold I) Integer
maxCapacity Max. capacity (productivity threshold IT) Integer
reductProd Reduction of productivity for resource units be- Double
tween threshold I and II
Decision variables
prodValue Real productivity value (begin of round) [Prin, Praz)
repProd Reported productivity value (decision) [Prnin, Praz)
resourcesAllocated Allocated resources (after report) Integer
profit Achieved profit after production Double
compensation Bonus payment by headquarter Double
repProdOpp Reported productivity by opponent [Prin, Praz)
Learning Models
cognitiveAbilitiy Learning model, defined by learning algorithm {ZI, LMjy,
and knowledge base LM,, LMs;,
LMy}
Sub-Var. ZI
probDistrib Probability distribution over strategy set for {uniform}
random action choice
Sub-Var. LMy / LMy
A Learning parameter (SV reinforcement learning [0,1]
model)
Sub-Var. LMyy
sysExplor LM, + Systematic exploration Boolean
k Times each possible action is chosen Integer
Sub-Var. LMs;
repProdOpp Opponents’ reporting behavior (Fict. Play) Boolean




Table 2: State variables and scales of the headquarter entity

Variable name Description Scale

Scenario variables

divisionManagers Division managers in the firm Entity: division
manager
resources Available resources on the company Integer
level
optCapacity Optimal capacity of resource units per Integer
division (productivity threshold I)
maxCapacity Maximum capacity of resource units Integer
per division (productivity threshold
II)
reductProd Reduction of the divisions’ productiv- Double

ity value for resource units between
threshold I and II

rangeProdValues Range of possible productivity values [Pyin + €, Pz — €
in divisions

Decision variables

repProds Reported productivity values by the Array of double values
division manager agents

allocRes Allocate resources to divisions Array of double values

profitDiv Achieved profit by divisions Array of double values

payComp Compensation payment to divisions Array of double values

(calculated by the Groves mechanism)
Incentive Scheme

incentiveScheme Incentive scheme by which the com- Groves mechanism
pensation is calculated

The variable cognitiveAbility is the core concept in this model. It represents the decision
strategy, knowledge, and learning behavior of the division manager agent. The cognitive ability
is varied by different learning models. The values of cognitiveAbility, thus, are sub-variables
having a sub-structure determined by the learning model elements. The chosen learning models
LM, _5 will be described more detailed in the section submodels (see below, Section 1.3.3).

Table 2 gives an overview of the state variables and scales of the headquarter entity. For
readability, the variables are grouped in scenario variables, decision variables, and incentive
scheme.

The scenario variables comprise again the capacity thresholds (optCapacity and mazCapac-
ity) and productivity value reduction (reductProd). Those are needed for the headquarter as
basis for the resource allocation decision (described in detail in submodels, see Section 1.3.3).
Additionally, the headquarter knows the divisions in the firm (divisionManagers, here two divi-
sions). Furthermore, the headquarter knows the number of resource units (resources) available
to the firm. Those have to be allocated to the divisions in the most effective way.

In the decision process, the headquarter decides about the allocation of resources (allocRes)
based on the productivity reports (repProds), reduced productivity value, and the given capacity
thresholds. The headquarter knows the range of possible productivity values (rangeProd Values)



Table 3: State variables and scales of the Groves mechanism entity

Variable name Description Scale
Output

payment Payment to the agents Double
Input

profit i Achieved profit by division i Double
expProfit j Expected profit by division j Double
Others

discount Discount factor for compensation Double
Gi(") Function - part of the Groves mechanism set to 0
Hi() Function - part of the Groves mechanism set to 1

with an epsilon (€), representing the information asymmetry between headquarter and divi-
sion managers. The achieved profit by the divisions is known by the headquarter (profitDiv).
The headquarter calculates the compensation payments by the incentiveScheme (here: Groves
mechanism) and pays it to the division as bonus.

Here, the headquarter only forwards decisions, information, and payments between the di-
vision and the compensation scheme. Also the resource allocation is a fully rational decision,
determined by an optimization algorithm. This is due to the setup of the laboratory experi-
ment. Here, the headquarter was represented by a computer, calculating the optimal resource
allocation and payment by the Groves mechanism functions. It is conceivable to implement the
headquarter as an agent with varying cognitive abilities as well. But, the focus in this study is
set on the effect of the Groves mechanism on the division manager, so that behavioral influences
from the headquarter are left out. The headquarter allocates the resources deterministically,
based on the reported productivity values and the known capacity thresholds. For the payment
to the division managers, the Groves mechanism is used. The headquarter lacks of autonomous
or self-directed behavior. Therefore, its action do not even have to be conducted by an own
entity but simulated by commands in the main class of the simulation model. Nonetheless, the
headquarter is implemented as entity in this simulation model. On the one hand, this makes
the organizational structure in the simulation explicit. On the other hand, future extensions
should be prepared and facilitated by structuring the headquarter as entity.

The Groves mechanism entity determines the payment to the division managers. Its
variables are listed in Table 3. For the description, the division manager agent for which the
payment should be calculated is indicated as agent ¢, and its opponent as agent j. The Groves
mechanism is defined by a deterministic function over the actual achieved profit II; by agent
i (in the simulation denoted by profit;) , and the expected opponents’ profit ij, based on the
productivity report by the opponent j (in the simulation denoted by expProfit;), as follows:

Ci = Gi(Py) - (TT; + 1) + H;(P;) (1)



Table 4: State variables and scales of the observer entity

Variable name Description Scale

Independent variables

cogAbility Cognitive ability of the division manager agents {ZI, LM, LM,,
LM;, LMy}
Dependent variables
delta Central measure I - truth-inducing effect: Delta be- Double
tween reported and real productivity value
compensation Central measure II - individual success: Quality of Double

decision as average compensation payment
Further input variables

incentiveScheme Compensation scheme used by the headquarter Groves
mechanism

pMin Minimum productivity value, specifying the division Double
agents’ strategy space

pMax Maximum productivity value, specifying the division Double
agents’ strategy space

resources Available resources on the company level Integer

optCapacity Optimal capacity of resource units per division (pro- Integer
ductivity threshold I)

maxCapacity Maximum capacity of resource units per division Integer
(productivity threshold IT)

reductProd Reduction of the divisions’ productivity value for re-

source units between threshold I and II
Further output measures

avgP Average profit on the company level Double
Ci - compensation payment for agent i
Gi( p ;) - positive function based on reported productivity j, here = 1
II; - actual profit i
ij - reported profit j

>

H;(P;) - arbitrary function based on reported productivity j, here = 0

According to the experimental setting, the strictly positive function Gi(PJ-) is set to 1, and
the arbitrary function H;(P;j) to 0.

The central management entity in the simulation is the main class observer!. This entity
schedules the agent actions and controls the course of the simulation. By this, the simulation
experiments are controlled. The input values and observed output measures for each simula-
tion round are written in an output file providing the basis for the simulation data analysis.
Consequently, the observer entity contains a comprehensive list of all global input and output

variables of the simulation model and its entities (see Table 4).

IThe terminology observer for the central entity was chosen based on the terminology used in NetLogo (see

[12]).



The core relationship in a model is described by the relation between independent and
dependent variables. In this model, this is the effect of cognitive ability (cogAbility) on the two
variables truthful reporting behavior and individual success. The truthful reporting behavior is
evaluated by calculating the difference between true and reported productivity (denoted in the
simulation model by delta). The average payment of the compensation indicates the individual
success. These core relationships are analyzed to investigate the robustness of the compensation
scheme (Groves mechanism) against varying cognitive abilities.

In addition to these variables, further input variables specify the model scenario: The in-
centiveScheme indicates the mechanism by which the compensation payment for the agent is
calculated. Here, only the Groves mechanism is considered. The input parameters pMin and
pMaz specify the productivity scale of the agents. In this simulation model, the productiv-
ity scale is the same for both division manager agents. Furthermore, the number of resources
available to the company are given (resources), the capacity thresholds (optCapacity and maz-
Capacity), as well as the productivity reduction (reductProd). The additional output measure
avgP measures the profit achieved on the company level. All output values are measured and
written in the output-file for each division manager agent separately.

1.1.3 Process Overview and Scheduling

The process and scheduling of the simulation model LAMDA can be described by one main
process. Based on the course of the experiment, an excerpt of the budgeting process is imple-
mented. An overview of the process implemented in the simulation model is given in Figure 1.
This figure illustrates the process between the entities Groves mechanism, headquarter, division
manager, and observer in a flow chart. To complement the picture, the figure shows the not
implemented part of the budgeting process between productivity report and resource allocation.
This part is depicted in dotted lines.

The implemented process consists of various stages defining the course of one simulation
run. First, a real productivity value for one run and each division manager agent is calculated
randomly?. Based on this, the decision process of each division manager agent takes place. The
division manager agent perceives its real productivity value and decides about its productivity
report to the headquarter. The subsequent negotiation process is left out in the simulation
model. Next, the headquarter allocates the resources to the divisions, based on the reported
productivity values and known capacity thresholds in the divisions. Afterwards, the divisions
implement the allocated resources. The achieved profit provides (next to the reported produc-
tivity values) a basis for the compensation calculation. For this, the headquarter entity invokes a
method in the Groves mechanism entity. Finally, the calculated payment is given to the division
manager agents, which process the compensation received.

Underlying the main process, several sub-processes such as the decision and learning processes
of the division manager agent take place. Those are only listed here and described in detail in
Section 1.3.3 (sub-models). The sub-processes, for referencing denoted and numbered by P#,
are (P1) definition of the real productivity value, (P2) decision process for a productivity report
by the division manager agents, (P3) resource allocation by the headquarter, (P4) production
and achieved profit by the divisions, (P5) compensation calculation by the Groves mechanism,
and (P6) bonus processing by the division manager agent.

2The real productivity value is chosen randomly with a uniform distribution over the set of possible produc-
tivity values between Ppuin and Prgz.
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Figure 1: Overview of one round in the simulation model, source: own work.

1.2 Design Concepts

This section gives an overview of the main context and modeling approaches underlying the
simulation model. The concepts should serve as a checklist for the modeler about all relevant
modeling decisions and provide a way to communicate these [4, p.10].

1.2.1 Basic Principles

The simulation model LAMDA builds on two fields of research: (1) ABS as assessment tool for
the application of (2) mechanism design theory (see Figure 2). The aim is to make use of ABS
for the analysis of mechanisms under the complication that the decision maker has no perfect
rational cognitive abilities. For modeling (and varying) these capabilities, learning agents are
used. Therefore, the agents are equipped with learning algorithms applied in ACE. To give
an example, LAMDA analyzes the effect of incentive schemes (here the Groves mechanism) in
management control.

1.2.2 Emergence

This study focuses on the micro learning behavior and success of the division manager. Neverthe-
less, there are results possible on the emergent level resulting from coordinated behavior between
the agents. Therefore, the behavior of both division manager agents is observed. Furthermore,



Assessment Tool Application Area

Learning Models for Agent-
Based Computational
Economics

Incentive Schemes in
Management Control

Agent-Based Simulation Mechanism Design

LAMDA - Learning Agents for Mechanism Design Analysis

Figure 2: (Main) Fields underlying the model design of LAMDA

the overall company profit is measured to analyze the organization success in comparison to the
individual payment and reporting behavior.

1.2.3 Adaptation

The learning behavior of the division manager agents is a central element in this model. A
detailed consideration of their adaptive behavior is given in Section 1.3.3 (submodels). The
headquarter agent only behaves deterministically.

1.2.4 Objectives

The division manager agents’ objective is profit maximization. They strive for maximizing the
compensation given from the headquarter. Therefore, the division manager agents explore their
reporting behavior to achieve the maximum payment. The objective of the headquarter agent
is to maximize the overall company profit. Therefore, the headquarter allocates the resource in
the most efficient way, based on the reported productivity values from the divisions.

1.2.5 Predicting

Depending on the learning model, the division manager agents may predict the future reporting
behavior of the opponent. Therefore, they observe the reports of the other division manager
agent (post-report, in the end of the round) and build beliefs about the probable next reported
value. Therewith, they may adapt their own decision to expected circumstances. The head-
quarter agent does not predict.

1.2.6 Sensing

The division manager agent senses its real productivity value, the resources allocated to its
division, the reported productivity value of the opponent, and the compensation value given by
the headquarter. The headquarter agent senses the reported productivity values by the division
managers, the profit achieved by the divisions, and the compensation for each division, given
from the Groves mechanism.



1.2.7 Interaction

In this model, the division manager agents may not contact each other by sending messages or
negotiating about the next productivity reports. However, they may interact with each other
indirectly. The division manager agents share resource units and may observe the reported pro-
ductivity value of each other. Furthermore, their payment depends on the reported productivity
of the opponent. By anticipation of each other’s reports, a coordination of decisions may take
place without communicating with each other explicitly.

By an extension to this model, communication between the division manager agents may be
implemented. As the effect of communication on truthful reporting under the Groves mechanism
is not in the focus of this study, this issue is not implemented here.

The division manager agents and the headquarter agent on the other hand do communi-
cate with each other. The division managers send their reports to the headquarter, and the
headquarter responds with information about the resource allocation. After implementing the
resources, information about the profit of each division is given to the headquarter. Based on
this, the headquarter calculates the compensation by the Groves mechanism and forwards it to
the division manager agents. A method in the observer entity (which is the main class in the
model) controls the information flow and communication.

The LAMDA simulation model does not implement a negotiation process between headquar-
ter and division managers.

1.2.8 Stochasticity

The following parts of the simulation model contain stochastic elements. First, the real pro-
ductivity values for every division manager agent and round are set randomly with a uniform
probability for each strategy. This process does not contain any path dependency as the selection
is started for each round and agent with the initial conditions. Second, the division manager
actions are chosen stochastically within the decision process (for details about the process and
selection probabilities see Section 1.3.3, sub-models).

The decision of the headquarter agent and the calculation within the Groves mechanism,
however, is deterministic.

1.2.9 Collectives

The two division manager agents and the headquarter in this simulation model belong to an
organization. In this model, the group level is no emergent phenomenon but modeled explicitly.
However, the organization is not implemented as entity with own attributes and methods, but
sets the frame in which the implemented budgeting process takes place.

1.2.10 Observation

Within each simulation run, a report of the simulation behavior is written in a .csv file. This
protocol stores the parameter values of all state variables (see above, Section 1.1.2). By output
measures, the success of resource allocation and compensation scheme may be observed on the
individual and the organizational level. Therewith, a statistical analysis may be conducted after
the simulation experiment.
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1.3 Details

After describing the concepts and modeling approaches behind the model, this section provides
more technical details. This should facilitate later replications of the model. This part de-
scribes the initial conditions of the model indicating the variable values for the simulation runs.
Furthermore, the simulation model input data are described, by which dynamic environmental
circumstances may be determined. Finally, the sub-model section provides insights into the
course of sub-processes within the main process of the model.

1.3.1 Initialization

The values by which the variables are initialized for one simulation run depend on the experi-
mental design of the simulation model.

1.3.2 Input Data

The model does not use input data to represent processes over time.

1.3.3 Submodels

This section provides insights into the definition and execution of all processes within a simu-
lation run. Describing the processes in such detail fosters the understanding of the simulation
model. Moreover, all model elements and their verification may be reconstructed by the reader.
This increases the reliability of the simulation results and decreases the black box effect of
simulation models as perceived by many.

The description is organized along the sequence of the sub-processes within the main process,
as described in Section 1.1.3, process overview.

P1 - Definition of the real productivity value Algorithm 1 describes the definition process
of a real productivity value for one division manager agent in one simulation round. For each
division manager agent, the observer entity chooses a real productivity value at the beginning
of a simulation run. The set of possible productivity values (P) is defined by increments of 0.1
between Py, and Py,q;. From this set, one value is chosen randomly with a uniform distributed
probability for all possible productivity values. By this, every value is chosen approximately for
the same number of rounds.

Alternatively to random choice, the real productivity value may be set systematically. The
real productivity value may be initialized in turns by each possible value. By this, each value
would be chosen by the exact same number. In this simulation model, however, the real pro-
ductivity is defined randomly according to the setting of the laboratory experiment.

Algorithm 1: Observer: Set real productivity value (P1)

Input: Productivity scale (Py,,: double, Pq.: double)
Output: Random productivity value (prodValue: double)
random < random number in (length of productivity scale - 1);
productivity value = (random - 0.1) + Pyyin;

return productivity value
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P2 - Decision process for the productivity report This decision process is a central
element in the LAMDA simulation model. Here, the division manager agent decides about the
productivity value to report to the headquarter. The agent may learn about the value of actions.
For choosing a strategy, the agent uses the planning strategy given from the respective learning
model. Those are described in the following.

Algorithms 2 to 4 show the planning processes in pseudo code. To identify the sub-processes,
they are denoted by P2.z, with z as placeholder for the learning model shortening.

Zero intelligent agents with learning model ZI act arbitrary without any reasoning or adap-
tion. Accordingly, the decision process follows the same procedure as Algorithm 1. The reported
productivity value is chosen randomly out of the set of possible productivity values, indepen-
dently from the real productivity value observed by the agent.

Algorithm 2 describes the decision process by learning model LM;. The knowledge base of
this model comprises only simple condition-action rules. The agent knows the set of possible
productivity values to report. A strength value indicates the value of the reports. In this simple
model, the strategy is only to choose a productivity value for the report, without relation to
the true productivity of the division. Over time, the agent adapts the strength values in the
knowledge base by the SV learning algorithm (for a description of the adaption process see
below). The strength of a strategy indicates the experience of the agent with this reported
value implicitly.

By Algorithm 2, the process of a roulette wheel selection is described. This is a common
mechanism for random selection based on a given value or probability. This algorithm is widely
applied in optimization techniques and genetic algorithms (see, e.g., [11] and [7]). The concept
as applied in the LAMDA model is described in the following.

Each rule in the knowledge base of the agent is assigned a value area; between 0 and 1. The
size of an area indicates the probability of a rule to be chosen. This corresponds to its strength
value and is calculated by:

t th;
probability; = % (2)
> iy Strength;

Based on this probability value, the area for each rule in the scale between 0 and 1 can
be determined. For the implementation of roulette wheel selection, a threshold for each rule
is calculated, indicating the upper limit of the areas. The threshold results from the sum of
probabilities. For roulette wheel selection, a random number r between 0 and 1 is chosen. This
number determines the winning rule, which is the one to which the value can be attributed.
The random number lies in the ’area’ of the rule, in analogy to the ball landing on a part of the
wheel after spinning it in the roulette casino game.

Table 5 shows an example to illustrate the process. This example assumes three rules, rule;
- ruleg, with the strength values 2.0, 4.0, and 2.0. According to Equation 2, the strength values
result in area sizes (probabilities) of 0.25, 0.50, and 0.25. Thus, the areas of the rules on the

Algorithm 2: Division agent: Decide about productivity value report (P2.LM; and P2.LMy)

Input: Observation: No observation for LMy, real productivity value for LMz (prodValue:
double)

Output: Decision: Reported productivity value (repProd: double)

Choose action of rule; with probability proportional to strength; return action of rule;;
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Table 5: Example for roulette wheel selection

strength; area-size; area; threshold;
rule; 2.0 0.25 [0.00, 0.25] 0.25
ruley 4.0 0.50 10.25, 0.75] 0.75
rules 2.0 0.25 10.75, 1.00] 1.00

Algorithm 3: Division agent: Decide about productivity value report (P2.LMs, )

Input: Observation: Real productivity value (prodValue: double)
Input parameter k: int
Output: Decision: Reported productivity value (repProd: double)
while rule set has more elements do
choose next rule;;
if counter for rule; < k then
counter ++;
return action of rule;
end
end
return choose productivity value report stochastically (Algorithm 2);

roulette wheel are the intervals [0.00, 0.25], ]0.25, 0.75], and ]0.75, 1.00]. For implementing
roulette wheel selection, the random number will be compared with the thresholds 0.25, 0.75,
and 1.00.

Algorithm 2 shows the algorithm as it is implemented in the simulation model LAMDA.
This algorithm is used for the decision process of learning models LM; and LMjy. The same
course of decision process applies for both models, with the difference of a more specific agent
knowledge in LMs. In contrast to LM, here the agent builds up experience for every observed
real productivity value. Therewith, the agent remembers and learns about the value of produc-
tivity reports in relation to its actual productivity. The explicit experience collection of LMj is
represented by a more extensive knowledge base, containing observed real productivity values.

LMy, defines systematic exploration as additional cognitive feature to LMz (Algorithm 3).
In this model, all strategies are chosen k times. By this, the division manager explores the effect
of all productivity reports systematically. Assuming a value of k=3 and a set of 9 productivity
values, the exploration phase would last 27 simulation rounds. Comparing LMy, with LMy, the
exploration phase lasts longer accordingly (in the example k - number of strategies? = 3 - 92 = 243
rounds), because the agent explores the productivity reports for all observed real productivity
values. After the exploration phase, the division manager agent chooses the productivity value
stochastically, according to learning models LM; and LM,.

As a variation, a systematic exploration of over-, underestimation, and truthful reporting is
conceivable. This would fit to the intention of the invented training rounds in the experiment
of [1]. Therefore, the definition of a distance for over- and underestimation would be necessary.
Moreover, a strategy for minimum and maximum values had to be defined. For simplification
and to overcome the dependencies to selected distance values, a systematic exploration phase
for the whole strategy set was chosen for this model. In the end, the analysis of over- and
underestimation is covered by this.

In the third learning model, LMs, the division manager agent anticipates the reporting
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behavior of its opponent and takes this into account in the decision for the own productivity
report. For this, the fictitious learning algorithm is chosen. Here, the agent knows the best
response to the behavioral alternatives of the opponent. Therefore, the agent needs complete
knowledge about the feedback function. The prediction of the opponents’ behavior is used as
additional knowledge in the decision process for the productivity report.

For prediction, the division manager agent uses his knowledge about all observed productivity
reports by the opponent in past simulation rounds. Based on the frequency of occurrence, the
agent calculates the probability for the next report. Accordingly, a roulette wheel selection may
be used again. For this, the number of occurrences provides the strength value by which the
probability values and value ranges are calculated. Algorithm 4 provides an overview.

This prediction method does not enable the agent to learn about more complex behavioral
pattern such as the character of report sequences. This can be achieved by a more complex
concept such as the event board described in [9]. Here, the agent memorizes not only the
number of occurrences but also the sequences of events. By this, typical decision orders may be
revealed.

Algorithm 4: Division agent: Decide about productivity value report (P2.LMj3)

Input: Observation: Real productivity value (prodValue: double)

Output: Decision: Reported productivity value (repProd: double)

Choose report; with probability proportional to the number of occurences; return choose
best response to prediction;

P3 - Allocate resources Based on the reported productivity values by the division manager
agents, the headquarter allocates the resources available to the company. The productivity is
not the only criteria for the most efficient distribution of resources, as the divisions are not able
to implement an unlimited number of resource units to their full productivity. The efficiency
of divisions depends on their capacities. Thus, the headquarter considers also the capacity
thresholds (see above, Section 1.1.2) within the divisions. By this, the coordination problem in
multi-divisional firms is represented.

For including this coordination problem in the simulation model LAMDA, an algorithm for
resource allocation was designed and implemented (based on the setting in the laboratory exper-
iment by [1]). By this, coordination scenarios may be described on an abstract, yet applicable
level for many situations. The existence of limited capacities influencing the effectiveness of
implementations can be observed frequently, such as the limited capacity of human employees
in teams, or of (human or technical) stations in production lines. As the algorithm for effective
resource allocation in such scenarios is complex, the following description is divided in three
Algorithms 5, 6, and 7, according to the implemented methods in the program code. This al-
gorithm is designed for only two divisions. The application of this algorithm for more divisions
would require an extension.

In these algorithms, the following abbreviations and terminologies are used. A division
manager agent is named with DM. The two agents implemented in the simulation model are
shortened with DM 1 and DM 2. The resources allocated to the division agent with the higher
reported productivity value are named with resourcesps report(+), the resources allocated to the
division with lower productivity denoted by resourcespas report(-) accordingly. The other vari-
ables are compliant with the variables described in Section 1.1.2. The expression resourcespys ;
+ resources/2 means that half of the resources available to the company are allocated to division
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manager agent 1. Expression resourcespys report(+) < optCapacity indicates that the division
with the higher reported productivity receives resource units to the amount of the optimal
capacity of the divisions.

Algorithm 5: Headquarter: Resource allocation (P3)

Input: Observation: Reported productivity values by division managers (DM) (reports:
double, reports: double)
Output: Decision: Resource allocation for division manager (DM) 1 and 2 (allocRes: int[])
double difference < |report; - reports|;
if difference == 0 then
return resourcespy 1 < resources/2 ;
return resourcespy 2 < resources/2 ;
if (resources % 2) != 0 then
| allocate rest to random division manager;
end
else
TeSOUrCESDM report(+) optCapacity ;
if reportpas report(-) > ( T€POTtDM report(+) - TeductProd ) then
‘ return resources < Algorithm 6 (report;: double, reports: double) ;
else
‘ return resources < Algorithm 7 (report;: double, reports: double);
end

end

Algorithm 5 distinguishes between the following cases. In the case of equal productivity
reports, the resources are divided homogeneously between the divisions. Because the parameter
difference is a double value, the equality is checked by an error of .001. If the difference of
the reports is less than .001, they are evaluated as equal. The reports are double values with
increments of .1 in the default setting.

If one division reports a higher productivity value than the other, the distribution of resources
depends on the level of difference between the productivity values. The divisions may only use
a reduced productivity for resources between the optimal capacity and mazimum capacity.’
This challenges the resource allocation process, as the best decision is not only to allocate the
resources to the division with the higher reported productivity. The reduced productivity for
resources above the optimal capacity has to be taken into account as well. This is solved by the
algorithms as follows.

First, the resources up to the optimal capacity are given to the division with the higher
reported productivity value. For the resource units above this threshold, two basic cases are
distinguished:

1. The lower reported productivity is higher than the reduced productivity of the division
with the higher reported value. In this case, it is more efficient to allocate the remaining
resources up to the optimal capacity to the division with the lower value, and the rest (if
existent) to the other division with the higher report (see Algorithm 6).

3In this simulation model, the same capacity thresholds and productivity reductions are assumed for both
divisions (according to the experimental setting). In case of different levels within divisions, the algorithm would
have to be extended.
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Algorithm 6: Headquarter: Resource allocation (P3.1)

Input: Observation: Reported productivity values by division managers (DM) (reports:
double, reports: double)
Output: Decision: Resource allocation for division manager (DM) 1 and 2 (allocRes: int[])
if resources < optCapacity then
return resourcespy report(-) < 0;
return resourcespy report(+) optCapacity;
else
if ( resources - optCapacity ) < optCapacity then
return resourcespy report(-) ¢~ I€sOuUrces - optCapacity;
return resourcespy report(+) optCapacity ;
else
if (resources - optCapacity) < maxCapacity then
return resourcespy report(-) < optCapacity;
return resourcespy report(+) < resources - optCapacity;
else
if ( (resources - optCapacity ) > maxCapacity ) & ( resources < (2 -
maxCapacity ) ) then
rest = resources - maxCapacity - optCapacity;
return resourcespM report(-) optCapacity + rest;
return resourcespy report(+) < maxCapacity ;
else
if resources > 2 - maxCapacity then
restShare < resources - 2 - maxCapacity ;
return resourcespy report(-) <~ maxCapacity + restShare/2;
return resourcespy report(+) < maxCapacity+ restShare/2;

end

end
end

end
end

2. If the lower reported productivity is even lower than the reduced productivity of the division
with the higher reported value, the resource units should be assigned to the division with
the higher value up to the mazimum capacity, and only the rest (if existent) to the other
(see Algorithm 7).

In both cases, the resource units above the sum of both division capacities are divided equally
(if this case occurs).

This shows the importance for the headquarter and the company success to have true infor-
mation about the real productivity values. If the reported productivity value does not match
with the real value, the company cannot solve the coordination problem in the best possible
way.

P4 - Production and achieved profit In the next step, the division manager agents imple-
ment the allocated resources. Based on the real productivity value and capacity thresholds, the
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Algorithm 7: Headquarter: Resource allocation (P3.2)

Input: Observation: Reported productivity values by division managers (DM) (report:
double, reports: double)
Output: Decision: Resource allocation for division manager (DM) 1 and 2 (allocRes: int[])
if resources < mazCapacity then
return resourcespy report(-) < 0 ;
return resourcespu report(+) ¢ resources ;
else
if ( resources > maxCapacity ) €& ( resources < (2 - mazCapacity ) ) then
return resourcespy report(-) ¢~ I€sOuUrces - maxCapacity;
return resourcespy report(+) maxCapacity;
else
if resources > (2 - maxCapacity ) then
restShare = resources - 2 - maxCapacity;
return resourcespy report(-) — maxCapacity + restShare/2;
return resourcespy report(+) < maxCapacity + resthare/2;

end
end

end

actual achieved profit of each division is calculated. Algorithm 8 describes the implementation
process and resulting profit for one division.

Depending on the relation between the number of allocated resources and the capacity thresh-
olds, the division may implement the resources to full, reduced or no productivity. Those three
cases are distinguished accordingly. The allocated resources up to the optimal capacity are im-
plemented to the full productivity. Up to the maximum capacity, the division may implement
the resources to a reduced productivity.

The resources above the maximum capacity are implemented without any profit. Therefore,
these resource units are first only added to the profit. In the end of the algorithm, all resource
units allocated and deployed by the division are deducted from the profit. The resource units
represent the costs engaged for the production process. Thus, the allocation and production of
the resource units above the maximum capacity cancel each other out.

It is important to note that the resource allocation decision (P3) by the headquarter depends
on the reported productivity value, and the achieved profit in the production process (P4)
on the real productivity value, as this is a central point in this model. This describes the
coordination problem within firms and motivates the design of incentive schemes such as the
Groves mechanism for truthful reporting.

P5 - Calculate compensation Given the profit achieved by the division manager agents,
the headquarter calculates the compensation for the divisions. Therefore, the Groves mechanism
entity is used. For the truth-inducing effect of this bonus, the calculation for each division bases
on the expected profit of the opponent and the actual achieved profit of the own division.

Algorithm 9 illustrates the course of calculation by the Groves mechanism. First, the ex-
pected profit of both divisions is calculated. Afterwards, the compensation payment for the
division managers is calculated. Therefore, the sum over the achieved profit and the expected
profit of the opponent is calculated. A discount factor scales the payment value.
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Algorithm 8: Division agent: Implement allocated resources (P4)

Input: Resources allocated from the headquarter (resourcesAllocated: int)
Productivity value (prodValue: double)
Output: Achieved profit by division (profit: double)
profit < 0.0;
if allocated resources < optCapacity then
| profit += ( prodValue - allocated resources);
else
profit += ( prodValue - optCapacity);
if allocated resources < maxCapacity then
‘ profit += (prodValue - reductProd) - (allocated resources - optCapacity);
else
profit += (prodValue - reductProd) - (maxCapacity - optCapacity);
profit += (allocated resources - maxCapacity);
end
end
profit -= resources;
return profit

P6 - Receive and process bonus In the final step, the division manager agents receive and
process their compensation. Depending on the chosen learning model, the bonus is processed
in the agents’ knowledge base. Agents with the ZI model do not adapt their behavior. Con-
sequently, no update of the agents’ knowledgebase takes place. In LM; - LMy, the strength
values of the rules are updated based on the compensation payment. This will be described in
the following. Agents equipped with learning model LMg, however, do not proceed the feedback
from the Groves mechanism, as they only learn about the opponents’ behavior and know the
best response given from the compensation scheme.

Algorithm 10 shows the strength update for the agents’ behavioral rules. In this description,
t denotes the current time step of the simulation run, and ¢t+1 the subsequent simulation step.
By the learning algorithm, the strength value of the next step ¢+1 is calculated for all rules in
the knowledge base. In Algorithm 10, ruleg,. denotes the rule that determined the last report
of the division manager. First, this rule is updated. Afterwards the strength of the other, not
chosen rules are calculated, named with rule;.

For the adaption process, learning models LM; - LMy, apply the SV learning algorithm.
As given from the SV learning algorithm [10], learning parameter A determines the influence of
exploration and exploitation on the new strength value strength;, ;. According to this, the sum
of (1-)) of the existing rule strength and A of the compensation payment determine the updated
strength value.

Next, the resulting difference between new and previous strength values of this rule is shared
equally over the other rules in the knowledge base. Therefore, an updateShare is calculated by
this difference divided by the number of rules - 1 (for the selected rule). This share is deducted
from the previous strength values of all other rules in the knowledge base.
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Algorithm 9: Headquarter with Groves mechanism: Calculate compensation (P5)

Input: Reported productivity values (repProds: double[])
Achieved profit by divisions (profitDiv: doublel])
Output: Compensation payment (payComp: doublel])
for all division manager agents do
expProfitpy 1 < profitpy 1 with reported productivity (Algorithm 8 (repProdpy 1:
double));
expProfitpy 2 < profitpy 2 with reported productivity (Algorithm 8 (repProdpy o:
double));
end
paymentpy 1 < discount - (profitpy 1 + expProfitpy 2);
paymentpy o < discount - (profitpy o + expProfitpy 1);
return payment;

Algorithm 10: Division manager: Receive and process bonus in LM; - LMj3 (P6)

Input: Payment by compensation scheme (compensation: double)
Output: Updated strength values in knowledge base (strengths: double[])
choose rulege. that determined the last decision;
strengthyq ( rulege;. ) < (1 - X)) - strengthy ( rulege. ) + A - compensationy;
update <— strengthi1 ( ruleg. ) - stregrimm2006ngth; ( rules. ) ;
updateShare «— 1 / ( number of rules in knowledge base - 1 );
while rule subset ( without rulese;. ) has more elements do

choose rule;;

strengthyq ( rule; ) < strengthy ( rule; ) - updateShare ;
end

2 LAMDA Simulation Framework

For the LAMDA simulation model, the programming language Java was chosen. For the imple-
mentation of ABS models, the programming language NetLogo [13] and the library Repast [2]
are possible alternatives, and commonly used in the social simulation community. Netlogo and
Repast support the implementation of ABS in particular by libraries for steering the simulation
experiments and creating graphical outputs. In the LAMDA model, however, spatial issues do
not play a role. Furthermore, a workbench providing a certain level of flexibility for future use
was aimed. Therefore, the object-oriented language Java was chosen for the given simulation
model. Also, the objective-oriented character of Java with the concepts class and object matches
well with the concepts agent type and (individual) agents in ABS.

This section introduces to the Java class structure as implemented in the program code.
Therefore, UML diagrams and figures provide an overview of the structure and main methods.

An overview of the package structure of the LAMDA simulation framework is given in Figure
3. The package gui contains the interface classes for setting the simulation experiment parame-
ter. Here, the user may specify the experimental setup. The main class of the simulation model
as well as a central management entity are part of the main package. A management entity
instantiates one observer object per experimental design point (= parameter combination). The
classes in the observer package schedule one simulation experiment and manage the simulation
output for this. Therefore, the observer class instantiate the agents as well as the mechanism
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Figure 3: Package structure of the LAMDA simulation workbench

with the parameter values as specified for the respective simulation experiment. The package
agents contain the agent classes. The agents instantiate their knowledgebase and learning algo-
rithm as given from the observer class and form their learning models. Package library, finally,
is a collection of support classes for some standard operations in the simulation model.

In the following, the classes behind the package structure are described in more detail. Please
note that the following sections describe no extensive documentation of the program code, but
an explanation of the most important setup elements.

2.1 Simulation Experiment Environment

For running a simulation experiment, the user may use a GUI. After the simulation started,
the simulation parameters can be set in window "LAMDA - Design of Experiments” (see Figure
4). Here, four categories of factors are listed: (1) learning models, (2) scenario parameters, (3)
opponent parameters, and (4) the experimental parameters.

First, the user of the simulation model may choose one or several learning models (ZI, LMy,
LMy, LMso,, or LMg3. If several learning models are chosen, the program runs one simulation
experiment for each model. This means that the division manager agents of the model are
equipped with the same model within one simulation experiment. For equipping the agents
with different models, an adaptation of this version would be necessary. This could be achieved
by creating an observer class for mixed learning models (for more details see below).

Second, the scenario parameters can be set by the user. Those are the state variables and
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scales for the attributes of the given coordination scenario (see Section 1.1.2).4

For the division manager agents, the scale and increment for the reported productivity
values can be either set differently from, or according to the real productivity values (see the
input fields "Productivity scale for reported values” and "Increment for reported values”). In the
default setting, the value range of the reported productivity is set and varied with the scale for
the real productivity (indicated by "<waried with prodScale>" and "<varied with increment for
real values>"). If the user chooses values instead of this default setting, design points are added
to the simulation experiment with variations for the reported productivity value independent
from the real. Again, the indicated scales are the same for both division manager agents.

However, the simulation toolkit allows a variation of some factors between the division
managers in area (3), which are the opponent parameters. In the default setting, the scales and
increments for the real and reported productivity values are set for the agents in area (2). If
the user sets some values in the fields of area (3) instead (with the same syntax as described
before), the real and reported productivity values for both agents are varied independently from
each other, as indicated in the fields.

Finally, the experimental parameters are set in area (4). Here, the number of ticks per
simulation run, as well as the number of runs per parameter combination can be specified. As
in the other input fields, several factor levels can be defined by writing them in the field, so
that the simulation toolkit allows experiments with varying ticks and runs, for analyzing their
influence on the output.

The definition of the factor levels, and thus the input for this GUI, is part of the design of
experiments. Here, the parameter combinations for the simulation runs as well as the number
of runs and ticks are specified in a systematic way.

A UML diagram of the main components behind the GUI is given in Figure 5. In the main
class LamdaMain an object of the Window class is instantiated. By java.awt.event. ActionListener,
the program waits for the input of the user. Based on the indicated parameter combinations,
the class LamdaScheduler organizes the simulation experiment. Therefore, this class prepares
the simulation output (File Writer outputCSV') as well as the observer objects.

LamdaScheduler initializes one observer object for each parameter combination. The observer
objects, organize the simulation run schedule and simulation output. Also, the number of runs
and ticks per simulation run as indicated by the experimental parameters are organized here.

As the learning model has the biggest impact on the simulation objects and schedule, one
observer class for each learning model is defined as sub-classes to Observer.java. The sub-classes
are accordingly ObserverZI, ObserverLM1, ObserverLM2, ObserverLM2plus, and ObserverLM3
(see UML diagram in Figure 6). Here, the learning models are initialized (method initial-
izeLA()), as well as the agents (createHeadquarter() and createDivManagers()). The method
runSimulationExperiment() organizes the schedule of runs and ticks, while round() manages
the process of one simulation tick. The method realProductivity() returns a random produc-
tivity value, which is evoked once per round for each division manager agent. By the method
resetRun(), the objects and parameters of the simulation experiment are reset. Finally, the
methods observeReportingBehavior() and printOutput() manage the simulation output.

Figure 7 illustrates the agent classes. The Headquarter agent knows about the scenario
variables, which are the number of resources available to the firm (resources), the productivity
reduction for resources above the optimal capacity (reductProd), and the optimal and maximum
capacities of the divisions (optCapacity, maxCapacity). Based on the reported productivity
values by the divisions (repProd), the Headquarter allocates the resources (allocRes). The divi-

4The factor levels for these parameters can be written in the field with the system decimal separator and a
blank (space) as separator.
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sions use the resources, which results in profits being observable by the Headquarter (profitDiv).
Furthermore, the Headquarter has an object of the Groves mechanism (gm) and its parameter
discount, to calculate the compensation payments to the divisions.
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1) Please choose one {or more) learning models:
LM 1 (Reinforcement Learning) v LM2 (Explicit experience collection)

LM2+ (Systematic exploration) [~ LM3 (Anticipate opponent behavior)

Lamda - Reinforcement learning parameter 05

Mumber oftimes to explore each strategy systematically G4

{2) Please choose the scenario parameters:

Resources - Integer values 10120 230

Min. productivity value - Double values 111417

Productivity scale - Integer values (length of strategy set, number of prod 3813

Increment for real values - Double values 0.1

Productivity scale for reported values - Integer values =varied with prodScale=

Increment for reported values - Double values =varied with increment for real values>

Optimal capacity - Double values out of [0,1] (share of resources) - Use 033

Maximum capacity - Double values out of [0,1] (share of resources) - Us 0,83

Productivity reduction - Double values out of [0,1] (share of reduced prod 010305

Discount factor - Double values out of [0,1] - Use comma as decimal  [0.10.305

{3) Please choose the opponents parameters:

Opponent productivity scale - Integer values =varied with prodScale>

Opponent increment for real values - Double values =varied with increment for real values=

Opponent productivity scale for reported values - Integer values =<varied with prodScale>

Opponent increment for reported values - Double values =varied with increment for real values=

{4) Please choose the experimental parameters:

Mumber ofticks per run - Integervalues 3000

Mumber of runs per setting - Integer values 10

Start simulation experiment!

Figure 4: Graphical user interface (GUI) of the LAMDA simulation workbench
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-repProd : ArrayList<Double>

-allocRes : ArrayList<Integer>
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Figure 7: UML diagram for the Agent package.




2.2 Agent Architecture and Learning Model

According to the setup of the LAMDA learning models as described in the model section,
the agent architecture is implemented in the two packages knowledgebase and learning. The
knowledgebase describes the structure of the cognitive model of the agent, while the learning
classes describe how the knowledge is adapted over time.

This section describes the knowledgebase first. Next, an overview of the learning package is
given. Along the description, this section will consider what steps need to be taken for other
models using this test bed.

The implementation of the LAMDA agent architecture is designed according to the general
procedure of perception, decision, and action, where the perception indicates the given state of
the agent. This model enables the agent to behave autonomously based on individual experi-
ences. The structure of the cognitive model consists of the main components Knowledgebase,
State, and Strategy (see Figure 8). One Knowledgebase contains m State objects, whereas one
State has n Strategy objects. By the knowledge base, the agent builds a symbolic model of the
environment. This goes along with the agent architecture of symbolic-reasoning agents in Al
[14].

Figure 9 describes the control flow of the agents’ decision process in the course of the simu-
lation. The structure of the cognitive model is described along this process in the following.

Knowledgebase

1

State

m = classes of observations

Strategy

n = length of action set

Figure 8: The simplified structure of the cognitive model implemented for LAMDA.

The central element is the state key, specified by the observation of the agent (1.). The
observed information is transformed into a string of elements (2.). The concatenation of the
information elements (separated with a comma) forms the state key, which specifies the state
in which the agent is in. The state key may contain wildcards (symbol "#").

The requirement for the application of this model is that the information is given to the
agent in a fixed order, so that a position within the state key always refers to the same content.
The information elements can be a text or a number. In the given model, the observation con-
tains only numbers, describing true or reported productivity values. Thus, the transformation
into a symbolic representation can be achieved by using the value combinations as state de-
scription. However, a transduction problem may arise in models, where more complex symbolic
representation is needed, such as complex interdependencies between observations.
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Figure 9: The application of the cognitive model in the decision making process.

The agent forwards the state key to the Knowledgebase object (3.). If the agent observes a
new combination of information, the Knowledgebase creates a new State object (5.). Coincident
with the State object, a set of Strategy objects are created (6.); for each action a; one Strategy
object per State object. The Strategy object contains the action as well as a strength value,
indicating the value of this strategy for the given state (the initial strength value is indicated
by the learning algorithm).

After creating the State and Strategy objects, the agent may choose one strategy (the selection
strategy is defined by the learning algorithm) (7.). If the agent already knows the situation, a
corresponding State object is part of the Knowledgebase, and a strategy is chosen immediately.
The reasoning process is determined by choosing the best experienced strategy in the given state.
The chosen Strategy object determines the agents next action, which is forwarded as answer
from the Knowledgebase to the agent entity (8.). Finally, the agent performs its action in the
environment (9.).

The LAMDA agent architecture has no internal mental conditions. Possible extensions
may consider different internal preferences, such as setting a focus on specific environmental
circumstances (i.e. certain positions of the symbolic representation). Here, the agent only
reacts to environmental conditions with a unified relevance for all observations. Therewith, the
reactive cognitive ability is in the focus of the model.

By this setup, the cognitive model provides a general model, applicable to many learning
models. In particular the close relation between observation and the dynamically created State
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objects makes the system more flexible for varying scenarios.®.

Next to the knowledge representation, the learning algorithm defines the learning dynamics.
The central element is the update process of the knowledge base. By the applied reinforcement
learning strategies, the strength values of the strategies are updated based on the experienced
value of action. How the feedback is translated into the updated strength values depends on the
respective algorithm. For applying the general LAMDA model to other reinforcement learning
algorithms than the applied, one has to create a subclass to Learning.java and implement the
method updateKB accordingly. In the constructor, the action set as well as the initial strength
values are initialized.

2.3 Mechanisms

The next central element of the LAMDA model is the mechanism implementation. The mecha-
nism calculates the compensation (=payoff) to the agent. The package mechanism comprises the
superclass Mechanism.java as well as the subclass GrovesMechanism.java. The classes contain
the only method calcCompensation, which is a calculator of the compensation scheme, based on
the parameters achieved profit, expected profit opponent, and discount (as defined by the Groves
mechanism).

The LAMDA model shows the potential of using ABS for analyzing the effect of mechanisms
under varying behavioral models. The Groves mechanism was chosen, amongst other reasons
because of its theoretically truth-inducing effect. Nevertheless, the consideration of alternative
mechanisms is possible with this framework.
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