
Extracted chapter from:

This Impermanent Eternity:
Scrutinizing the sustainability paradigm

J. Kasmire

December 2, 2014



2



Chapter 1

Experimenting

Science is a way of thinking much more than it is a body of knowledge.

Carl Sagan Sagan (1974)

This chapter continues by focussing on the third TM cycle step, that of creating
and executing transition experiments. As before, this chapter begins with some known
knowns drawn from the sustainability paradigm map that frame a known unknown.
Transitions theory makes another appearance, this time accompanied by chaos the-
ory as both theories disagree about the di�erences between radical and incremental
innovations and about the relationship between those two types of innovation and a
system-wide emergent transition. This disagreement forms the basis of the unknown
to be explored in this chapter.

This particular unknown is very important because innovation, and speci�cally
radical innovation, is thought to be the key to successful transitions and therefore key
to a successful transition to sustainability. For this reason, transition experiments are
typically geared toward increasing innovation, increasing the radicalness of innova-
tions, protecting innovations with radical potential, or all of these at once. Thus, this
chapter not only scrutinises the con�icting views on innovation as a key to transitions
but also the way that experiments based on those views work as part of a TM cycle.

1.1 What is known and suspected but not known

This chapter begins with myriad knowns plucked from the sustainability paradigm
map before proceeding to explain how those knowns encircle a known unknown that
matters for sustainability and that relates to the third TM cycle step. The chapter
then runs through an entire mini-TM cycle, ending with �rst order learning that
expands or improves the knowns on the sustainability paradigm map and second order
learning that re�ects on the validity of the entire map in light of the experimental
results.
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1.1.1 The knowns

Complex causes, complex e�ects Although the classical paradigm sought, and
often found, seemingly simple cause-e�ect relationships, the CAS paradigm does not
look for or expect to �nd such simple, linear relationships. Instead, complex e�ects
and phenomena, like transitions or radical innovations, are understood to be the
result of multiple interacting factors at multiple system levels. Historical analyses
and transition experiments work to tease apart these factors, which so far appear to
fall into three main divisions. Each of these divisions then lends itself to a category
of transition experiments.

(a) Properties determine the potential E�ects (b) Potential E�ects are modulated by selec-
tion

(c) Past Properties, E�ects and selection con-
tribute to future Properties, E�ects and selec-
tion

Figure 1.1: The three main complex and interacting factors governing how an innovation's Properties relate
to its E�ects in a CAS.

First, innovations are emergent phenomena, meaning that their E�ects are visible
at one level, while the Properties belong to a lower level. This makes an innovation's
Properties di�cult to examine for the radicalness that causes the E�ect of `jumping'
across the adaptive �tness landscape. Transitions are also innovations (Chappin,
2011) but their Properties are high-level enough to be examined. Such examinations
suggest that all radical E�ects are linked to at least one radical Property (although
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radical Properties do not guarantee radical E�ects) or that Properties at any system
level determine the potential E�ects at higher levels (See Figure 1.1(a)). Thus, some
transition experiments want to increase the number of radical Properties in order
to increase the number of radical E�ects, including transitions. These transition
experiments are equivalent to producing more `innovation seeds' or more `radical
innovation seeds', typically by boosting innovation, boosting the radical Properties of
innovations, or recognising radical Properties before their E�ects are known.

Next, Properties and E�ects are not linked together in a vacuum. Selection pres-
sure acting on innovations is understood to balance variation so that strong selection
means less radical innovation while weak selection means more radical innovation.
When they �rst appear, radical innovations are usually ill-adapted, uncompetitive
`hopeful monstrosities' because jumping across the �tness landscape sometimes means
arriving at a lower elevation. Some of these ill-adapted new radical innovations are
quickly wiped out by strong and consistent high-level selection pressures. Others
�nd themselves protected in niches with weaker, inconsistent or at least di�erently
oriented selection pressures. Developing within that protection o�ers radical inno-
vations a chance to reach the full radical potential of their Properties so that they
produce radical E�ects. Thus, while an innovation's Properties determine its potential
E�ects, those Properties interact with selection to modulate the potential for E�ects
(See Figure 1.1(b)). Along these lines, many transition experiments use Strategic
Niche Management (SNM) or similar models to reduce or alter the selection pressures
within niches or sub-systems. These transition experiments are equivalent to observ-
ing or creating ideal growing conditions into which the `radical innovation seeds' can
be planted, typically by creating or altering subsidies, exemptions or delayed con-
straints in promising areas or by reducing pressure on front-runners and blue-sky
thinkers.

Finally, the selection-variation balance is not �xed or externally imposed but the
product of previous innovations-selection interactions. Radical innovations appear
to disrupt selection and create windows of opportunity for more radical E�ects in
the future while incremental innovations appear to bolster selection, strengthening
the dynamic equilibria and smothering radical E�ects. This makes the innovation-
selection balance self-reinforcing and means that transitions or other radical E�ects
are rarely the result of single innovation with especially radical Properties or speci�c,
especially favourable selection environments. More commonly, radical E�ects at any
system level are the emergent outcome of multiple, interacting, mutually supportive
lower level innovations, di�usions, behaviours, or changes that create feedback loops
and other non-trivial behaviour. As such, they only occur when an innovation has
su�ciently radical Properties and enjoys a su�ciently low selection environment and
can ride a self-reinforcing wave of disrupted selection pressure, which could explain
why radical innovations and transitions are so rare. Thus, an innovation's Properties
and selection environment interact to determine its own E�ects, but they are also
determined by those of past innovations and in turn determine those of future inno-
vations (See Figure 1.1(c)). Therefore, some transition experiments set out to link up
innovations, niches and emergent patterns to create self-reinforcing behaviours. These
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experiments might be equivalent to repeatedly planting the best innovation seeds in
the best growing conditions to observe how each planting in�uences the following.
Ideally, these transition experiments involve multiple component experiments with
di�erent and potentially aligned aims.

Unfortunately, transition experiments have so far failed to produce a transition.
The failures are especially clear for experiments reducing or altering selection pressures
through SNM which �were certainly over-optimistic� (Grin et al., 2010, p. 104) as they
have mostly slowed innovation development, produced uncompetitive innovations, and
created subsidy addictions (Moor, 2001; Needham and Faludi, 1999). Although not
successful in producing a transition, those experiments have arguably produced the
positive outcomes of showing what doesn't work.

Complex cause, various e�ects CAS are not only complex, but also chaotic.
One important chaotic behaviour is the self-organising criticality (SOC), classically
depicted with a sand pile. Roughly equivalent grains of sand are iteratively added to
the top of a pile, where most leave the pile apparently unchanged, although rarely
some precipitate an avalanche. Avalanche frequency varies as a power of the size,
so that there are many small avalanches but very few enormous ones in a power
law distribution. There are no general rules about the properties or features of the
grains of sand that cause big or small avalanches since most grains of sand cause no
avalanche at all, whatever their size. Instead, the outcome of each additional grain
of sand depends on the speci�cs of that particular grain of sand, where and when it
falls, and its relation to every other grain of sand that has already fallen.

Power law distributions are seen in other natural phenomena such as earthquakes,
solar �ares, meteor strikes, forest �res, landslides, and cracks in pavement. These
too would seem to be the product of SOC in chaotic systems. More importantly,
power law distributions are also visible in many socio-technical phenomena, including
patent citations, scienti�c journal citations, stock market �uctuations, the size of
cities, return on investments, �rm size, trading volume, executive pay and income
distribution (Arthur and Polak, 2006; Bak et al., 1987; Gabaix, 2008; Gabaix et al.,
2003). These power law distributed measures are almost precisely the same ones used
to identify radical innovations, front-runners, niches ripe for protection or innovators
with radical potential, which suggests that radicalness may be a SOC in a chaotic
system. Consequently, researchers have begun to investigate radical innovations and
transitions in socio-technical CAS as responses to a SOC driver (Arthur and Polak,
2006; Silverberg and Verspagen, 2005).

Observers may detect patterns or relationships in E�ects or other radical system
outputs, and they may translate those observations into hypothesised causal rela-
tionships for predicting future E�ects, just as avalanches can be investigated and
interpreted to produce causal explanations or predictive models of sorts (Mudge,
1965). Unfortunately, the hypothesised `causes' of recognised SOC outcomes tend to
be frustratingly dissimilar, unique, contingent and path dependent while conditions
that seem quite similar produce no avalanches or SOC e�ects. This doubly dissoci-
ates the suggested `causes' from the e�ects and leaving the observed e�ects a general
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explanation and rendering the pattern stubbornly unpredictable (Hough, 2009). The
Properties and E�ects of innovations are also doubly dissociated, with radical Ef-
fects coming from innovations that show no clear radical Properties (Bradshaw, 1992;
Bradshaw and Lienert, 1991; Kasmire et al., 2012; Korhonen and Välikangas, 2014;
Sarkikoski, 1999) while innovations with apparently very radical Properties producing
no E�ects at all (Johnson, 2010). Predictions of `the next big thing' in innovation are
often equally, but more hilariously, inaccurate (Benford, 2010).

The patterns and hypothetical causal relationships they suggest are observer de-
pendent, which may say more about the observer and the system boundaries they
are wont to impose than about the system upon which those boundaries are imposed.
With this in mind, it is relatively easy to see radical innovations as jumping across a
�tness landscape by simply leaving the connection between the origin and destination
outside the system description. Similarly, it is easy to see a sand pile as the same

sand pile after some grains of sand are added and as a di�erent sand pile only after
an avalanche, even though the sand pile can also be seen as di�erent after every sin-
gle addition. The before and after di�erences when there is no avalanche will seem
very trivial to most observers, but chaotic systems are sensitive to ostensibly trivial
di�erences because of the butter�y e�ect. Furthermore, the system boundaries of
irreversible and path dependent systems cannot be compared over time because hat
the exact conditions before an interaction can never be recreated to disentangle its
contribution. Imagine trying to exactly reset an entire sand pile to the way it was
before an avalanche to see if a di�erent grain of sand would cause a similar slide. It
is equally ridiculous trying to remove all traces of a radical innovation, reverse all
ageing and learning, and introduce a di�erent innovation to see if it produces the
same E�ects as the �rst.

1.1.2 The unknowns

The gap of unknown now begins to materialise amongst the knowns. The continued
debate about what are the necessary and su�cient conditions for the rare, rapid
and widespread advances that come from radical innovations and transitions and
how they di�er from the necessary and su�cient conditions for the common, slow
moving, incremental change within a dynamic equilibrium reveals a very common and
often shared assumption. That assumption is �that these two types of evolutionary
change must arise through very di�erent internal mechanisms and from very di�erent
underlying principles� rather than both being `special cases of a common theory . . . one
system with 2 di�erent types of response' � (Cohen and Stewart, 2000, p. 334).

This means there are two possible explanations for radical innovations or transi-
tions, but each has very di�erent consequences for transition experiments and other
attempts to understand, interpret, predict, in�uence, or reproduce the phenomenon
of interest. If innovations are like seeds, then their radical or incremental potential
is already contained within them, even though their ability to reach that potential is
modulated by the environment, which is in turn modulated by previous innovations.
On this basis, historical analyses and transition experiments are part of the �ana-
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lytical component of research into transitions [that] focuses on tracing, recognising
and measuring transition patterns-not in the classical, deterministic sense, but in the
co-evolutionary sense, making use of recent insights derived from complexity theory�
(Grin et al., 2010, p. 121). These pattern-centric analyses hope to untangle the com-
plex causal relationships, at least to some extent, in order to improve the ability to
create, shape or manage the E�ects, including radical innovations and transitions.

If innovations are like grains of sand, then their potential to produce radical or
incremental E�ects is not within themselves, nor their immediate environment, nor
even nearby interactions 1. Instead, an innovation's E�ects would be the emergent
outcomes of the entire history of the entire system, with no general or meaningful
causes in a chaotic, non-periodic, evolving system and no possibility of predicting,
in�uencing, managing or reproducing speci�c E�ects. What's more, if the SOC and
resultant power law distributions are any indication that the system is operating at
the edge of chaos, then that system may already be precariously poised at or near
the point at which all coupled sub-systems are tuned to each other (Kau�man and
Johnsen, 1991), meaning that any interference can only be detrimental. A pile of sand
will su�er very little from such detrimental meddling, but a CAS populated by real
people has much more to lose, such as its ability to adapt or to maintain advantageous
adaptations.

The knowledge gap to explore therefore relates to whether innovations are more
like seeds, packed with potential, or like grains of sand, with their potential resting
in a system that never repeats. And yet, that knowledge gap goes a bit further
than just asking which explanation is more appropriate because each explanation
entails di�erent ideas about how to best interact with the system, with one advocating
intervention and the other saying that intervention can only make things worse.

1.2 Step One - Transition arena, problem de�nition

and system description

1.2.1 The transition arena

Transitions theory and TM are once again part of the transition arena, this time
representing a transition arena participant who detects meaningful patterns in the
various historical analyses of past innovations and transitions. This transition arena
participant believes that those patterns hint at causal relationships and that transi-
tion experiments are a way to examine, explore and better understand those patterns
and relationships in order to predict, in�uence or manage the desired E�ects. This
transition arena participant endorses the three factors described and depicted above
(See Figure 1.1) as the necessary and su�cient conditions for producing a radical in-
novation or transition and uses these as the basis for designing transition experiments.

In general, transition experiments are learning how to manage the selection-
variation balance in a CAS. Tilting the balance toward variation at the expense of

1Remember that not interacting is a kind of interaction, although it is harder to recognise.
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selection is intended to temporarily destabilise and instigate a transition but the
balance must be shifted back toward selection once the system has been caught in
a sustainable attractor. As part of learning how to manage the selection-variation
balance, transition experiments tend to fall into various categories including increas-
ing innovation (encompassing boosting total innovation and boosting radical innova-
tion), protecting promising innovations in appropriate niches, and making connections
between transition experiments to build up self-reinforcing behaviours. Given that
transition experiments have had quite limited success so far, this transition arena par-
ticipant would conclude that there must be a quite complex relationship between the
various factors and between the conditions and outcomes of transition experiments.

Chaos theory The other transition arena participant is chaos theory, which is re-
lated to but not the same as complexity theory (See ??). This participant believes
that, contrary to the impression given by history books, innovations Properties are
not meaningfully or causally linked to E�ects and that the links found in historical
analyses are the result of cherry picking, mental gymnastics, subjectivity and a �nat-
ural tendency to romanticise breakthrough innovations, imagining momentous ideas
transcending their surroundings, a gifted mind somehow seeing over the detritus of
old ideas and ossi�ed tradition.� (Johnson, 2010). Since innovation, CAS and SOC
are inherently messy, non-intuitive and unwieldy, this transition arena participant
puts more store in the results coming from ABM and other `in silico' investiga-
tions than in historical analyses, which allow researchers to observe the entire un-
predictable, chaotic, evolutionary, and dynamic process without the same biases and
distortions that arise from after the fact analyses (Almirall and Casadesus-Masanell,
2010; Arthur and Polak, 2006; Auerswald et al., 2000; Ethiraj et al., 2008; Frenken,
2001, 2006; Gavetti and Levinthal, 2000; Goldenberg et al., 2001; Ma and Nakamori,
2005; Rivkin, 2000; Silverberg and Verspagen, 2005). In these models, incremental
changes are not dismissed as unimportant, excluded from the model, or idealised as
some sort of equilibrium but are allowed to accumulate, interact, serve as building
blocks and foundations for future innovations, and contribute to SOC that occur at
some distant point in time, space or system level within the system. Notably, models
have found innovations that qualify as radical coming from purely incremental tech-
nological development (Arthur and Polak, 2006; Silverberg and Verspagen, 2005),
meaning that novelty, change and radical E�ects do not need a separate or external
cause.

This transition arena member sees transition experiments as trying to create the
conditions that preceded a past SOC according to subjective impressions of similar
conditions. Pointing to the lack of transition experiment success, this transition arena
participant responds with:

Increasing innovation Evolving systems are already working at the limits of their
capacity to innovate (Kau�man, 2002), although most observers will cheerfully
ignore much of that innovation by labelling it a `dynamic equilibrium'. This is
not to say that innovation cannot be manipulated, just that manipulations are
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unlikely to work as intended could, at least temporarily, reduce innovation2.

Increasing radical innovation The power law distributions governing radical Ef-
fects are the result of SOC, which is self-organising and scale-invariant, meaning
that �ddling about with rewards and punishments will not make a blind bit of
di�erence to the overall ratio of radical to incremental innovations.

Protecting niches Fully closed systems usually go to equilibria and semi-closed sys-
tems to dynamic equilibria, so arti�cially isolated sub-systems are unlikely to
produce the desire non-equilibrium behaviour. If variation and selection are
allied rather than opposing, so that more innovation entails more selection and
vice versa, then semi-isolated niches will only have di�erent selection pressures
rather than weaker selection pressures. Thus, changing a niche will either suf-
focate an innovation's development or optimise it to conditions that appear
nowhere else outside the niche.

Linking to create emergence Creating links between niches or niche-innovations
is contradictory to the idea of protecting them in semi-isolation, but it at its best
this idea demands that the emergent outcome of the links and interactions can
be anticipated or managed, even though emergence is by de�nition intractable,
unpredictable and surprising.

1.2.2 The problem de�nition

Now, the transition arena has arrived at a bit of an impasse. Both participants agree
that there are two system responses but disagree on number of distinct causes for
those responses. Models capable of producing the two distinct responses can be built
with one cause or two causes, but the two viewpoints cannot be reconciled into a
single system description since they (more obviously than most) necessarily exclude
each other. Therefore, instead of blending the system descriptions as a transition
arena normally does, I blend the two perspectives in a di�erent way. The model itself
is built along the lines of the chaos theory participant and draws on past models based
on the NK model underlying the concept of �tness landscapes (Kau�man, 1993) or
on lattice percolation models (Silverberg and Verspagen, 2005). Both of these types
of models have limitations in the way changes in �tness over time are represented, the
way innovations relate to each other, and the representations of complexity and co-
evolution. A less common model improves on these by incorporating the cumulative
nature of innovations and a variable concept of �tness (Arthur and Polak, 2006), but
is in�exible, di�cult to program or work with, and complicated to interpret (Arthur,
2009; Arthur and Polak, 2006; Scott, 2010). The ABM system description emerging
from this transition arena takes the important features of these models, but with some
simpli�cations to make it �exible, easy to work with and interpretable.

2Don't worry, as Dr. Ian Malcolm in Jurassic Park said, �Life, uh... �nds a way.�
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While the model �ts the chaos perspective, the experiments performed on it match
the perspective of transitions theory, speci�cally replicating the various kinds of tran-
sition experiments. The simpli�cations and abstractions of this model mean that the
innovation rates, innovation's Properties, or selection pressures can be directly ma-
nipulated rather than in�uenced in the circumspect ways that real-world transition
experiments are restricted to. The perspectives of each transition arena participant
are therefore accommodated together, limiting the tendency for models to con�rm
the perspective according to which they were built3 which is a persistent problem of
model building. More importantly, this blend of perspectives moves the problem to
be addressed away from explaining an observed phenomena (which both perspectives
are equally capable of doing) and toward an exploration of whether the actions ad-
vocated by one perspective can in�uence system outcomes in a model that matches
another perspective. Essentially, the problem is now about determining the role for
transition experiments in a system where innovation is shaped by SOC.

1.2.3 The system description

Environment description Perhaps unusually, I begin with the environment, which
is a `landscape' made of `peaks' and `valleys', both of which are lists of integers de�ned
at the initialisation of the model. The peaks represent the needs that drive technology
evolution, such as the need for heating, transport, fashionable shoes or mousetraps,
but are simpler than the logical operator needs used by Arthur and Polak Arthur and
Polak (2006). In the model, as in the real world, these needs represented by these
peaks can be satis�ed in many ways with new innovations continually trying di�erent
and potentially better ways to do so until the need has been well and truly satis-
�ed, which is possible with logical operators or integers, but arguably not possible for
fashionable shoes. The valleys represent dead ends, non-functional, problematic or
physically impossible technologies. These might include an innovative combinations
of two individually useful technologies that work at cross purposes, such as chocolate
teapots, glass hammers or tissue paper roofs4 or they might include imaginable but
physically impossible technologies like perpetual motion machines.

Before initialisation, the modeller speci�es a maximum integer, the density of
peaks and the density of valleys (See Figure 1.2). When the model is initialised, the
peaks and valleys are randomly created according to their respective densities between
one and the maximum integer. The same number can be both a peak and a valley,
representing a technology that would solve a societal need perfectly but which is not
practically possible5 and there are no restrictions on whether adjacent numbers can

3Garbage in, garbage out. This famous modelling maxim reminds modellers that building a model
that behaves the way you expect doesn't mean that the world works like the model, only that the
model represents one possible way that the world could work.

4Someone who celebrates Easter might well enjoy a chocolate teapot with a little chocolate bunny
peaking out and the winner of the Builder of The Year might get a trophy made of glass or crystal in
the shape of a hammer. However, specialised, absurd or gag-gift purposes aside, these are all pretty
useless innovations, so are simpli�ed in this model as total dead-ends.

5Cold fusion, or communism, perhaps?
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both be peaks, valleys, or one of each. Although this model uses the �tness landscape
metaphor, the usual �tness landscape concepts of local and global optima do not
apply. The landscape peaks can be understood as being equally high, although the
way they are clustered or scattered across the landscape will mean that their slopes
are not equally steep.

Figure 1.2: A typical landscape set up for these Adder model experiments, with the maximum integer set
to 1000, peak density set to 70% and valley density set to 25%, creating 700 peaks and 250 valleys.

Agent description The agents in this model represent innovations or technologies
with an arrangement of component parts. Each technology agent has a structure made
of a �xed number of components separated by the arithmetic operators + and -. The
very �rst technology, called the primitive, has only a single de�ned component, a one,
and a single de�ned operator, a +. During the model operation, which I explain fully
below, the primitive's structure is cloned and then modi�ed by randomly de�ning (or
rede�ning) one of the operators and one of the components. When an operator is
(re)de�ned, that operator is replaced by either a + or a -, but when a component
is (re)de�ned, that component is replaced by the entire structure of any technology
currently marked as available for use. This allows new technologies to be built out of
previously existing technologies, and for two technologies with all the same component
parts to have those parts arranged di�erently, with consequences for �tness.

Summing over a technology's structure determines its product. The primitive
always has a product of one, but later technologies can have higher or lower (even
negative) products. A technology's product is compared to the predetermined peaks in
the landscape to �nd its nearest peak and the absolute di�erence between the product
and that nearest peak is recorded as its distance-to-nearest-peak. The number of non-
zeros that appear in its recursive structure determines its cost, which can never be
negative. Thus, the primitive always has a cost of one, but other technologies can
have much higher costs. Cloned technologies are only incrementally modi�ed versions
of their parent, but the small change between a + and a - or between one component
and another means that products and costs can di�er widely between a parent and
o�spring (See Table 1.1).

A technology agent's �tness can also be very di�erent to that of its parent because
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Technology agent Structure Product Cost Fitness

Primitive +1 1 1 0.25

X +1-1+1+1 2 4 0.125

Y +1-1+1+(+1-1+1+1) 3 7 0.107

Z +1-(+1-1+1+1)+1+(+1-1+1+1) 2 10 0.05

Q +1+1+1+1+1+1+1 7 7 1
Table 1.1: The structure, product, cost and �tness of example technology agents in a run with �tness
landscape peaks at 3 and 7.

�tness is calculated as:

1

1 + distance-to-nearest-peak
∗ product

cost

This means that �tness can be negative, but never higher than 1. Through the cloning
process, the population of technologies can adapt over time, growing progressively
�tter by either achieving a product closer to a peak or by reducing cost relative to
their product, with the ultimate �tness possible only both product and cost exactly
equal a peak.

Technology agents also record whether or not they are in the active-repertoire,
which can be understood to mean they are currently available for use. At any point
in time, the top ten �ttest technologies per peak are automatically in the active
repertoire because they represent the best available solutions for each societal need.
They also record all the technologies used as a component in their own structure
in their contributor-tech-whos, and when a technology agent is put into the active
repertoire, all of its contributor-tech-whos are also put into the active repertoire.
This is meant to account for the way technologies do not disappear when a better or
more e�cient one comes along, but continue to be used, even in new innovations if
they are cheap, reliable or ubiquitous6. Finally, technology agents also record which
others use their structure as a component in their who-uses-me, who is their parent,
and who are their o�spring.

Standard model operation Now that we know about the environment and agents,
let's take a look at what happens in the model when it operates in standard mode.
The landscape of peaks and valleys and the primitive agent are created during ini-
tialisation. Then, and at the beginning of every time step, the active repertoire is
cleared. Following this, the ten �ttest technologies per peak are placed in the active
repertoire. If two or more tie for a position in the �ttest, the tie is broken randomly.
Then, all technologies that appear in the contributor-tech-whos of any technology

6Consider how people continue to drive older car models, even when better ones are available,
how the parts for those old cars are still produced, and how an inventor might use those old parts
when tinkering around in the garage instead of always choosing to experiment with brand new,
state-of-the-art parts.
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already in active repertoire are also placed in the active repertoire, recursively, until
no more that qualify. At the �rst time step, the only technology agent in the active
repertoire is the primitive.

Next, the �ttest technology per peak is cloned six times. If there is a second
�ttest, it is cloned three times, and if there is a third �ttest, it is cloned once. Again,
any ties are broken randomly. Clones have an exact copy of their parent's structure,
with one randomly selected operator replaced with either + or - and one randomly
selected component replaced with the entire structure of another technology drawn
randomly from the active repertoire. Although every clone changes one operator and
one component, the operator might replace a + with a + or a - with a - for no net
change, but there is only a vanishingly rare chance that a component will be replaced
by the same component. At the �rst time step, the only available technology is the
primitive, so it is cloned six times. Most of the operator modi�cations will have no
e�ect on the product or the cost, even if they do result in a change of sign, since most
of the operators precede zeros. At this �rst step, the primitive is the only technology
in the active repertoire, so the component change of all o�spring will involve inserting
the entire structure of the primitive into one of the component positions.

At every subsequent time step, the active repertoire is once again cleared and
then �lled, this time with some of the o�spring as well as the primitive. Now multiple
technologies are cloned and there are multiple options in the active repertoire to be
inserted as components, meaning that the second generation of clones will be less
homogeneous than the �rst and could approach new peaks as their products diverge.
Clones whose product exactly equals a valley are killed o�, never getting a chance to
be in the active repertoire, to clone themselves or to become a component, but still
count as one of their parent's clones for that time step.

A peak is approached when any technology has that peak as his nearest peak
but a peak is only reached when a technology's product exactly equals the peak. The
�ttest technology agents for reached peaks continue to produce clones and technologies
whose product exactly equals a peak can still be bumped out of the �tness rankings by
subsequent technologies whose product also exactly equals the peak, but whose cost
is lower. As technologies move down the �tness rankings they stop qualifying for the
active repertoire on their own merits and will only remain active if some much �tter
technology agent uses their structure as a component part. Occasionally, a technology
bumped out of the active repertoire will trigger a wave of obsolescence as many other
technologies suddenly no longer qualify.

This standard mode of operation is useful for creating a control experiment that
lays out the baseline metrics against which the transition experiments with non-
standard operation can be compared. The standard mode also allows a large param-
eter sweep to explore the general model behaviour and to settle on the �nal set of
parameters that are most interesting for the remaining experiments.

Non-standard model operation The standard model is important, and prelim-
inary testing showed that it produced the desired SOC behaviours for a wide range
of initial parameter settings. However, various non-standard modes of operation are
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needed to create the experimental cases that mimic the typical transition experiments.
Transition experiments use indirect methods of in�uence but this model allows direct
manipulation. In the cases with the Extra Radical mode of operation, approxi-
mately ten percent of clones have two operator changes and two component changes
while the remaining ninety percent having only one of each change as in the standard
model operation. Clones with twice as much change will be less like their parents
and so can be understood as travelling further across the landscape in a single gen-
eration than normal. These `jumps' can be interpreted as more radical Properties
which should, according to the transition arena participant representing transitions
theory, produce more radical E�ects. In the Extra Innovation experimental cases,
the number of clones produced is increased so that the the �ttest technology agent
produces ten clones instead of the standard six, the second �ttest produces �ve clones
instead of three, and the third �ttest produces three clones instead of one. This
mimics the desired outcome of transition experiments that seek to increase total in-
novation, which could also produce more radical E�ects. The experimental cases
with the Niche Protect mode of operation identify a peaks with at least one but
fewer than four technology agents that share that nearest peak and apply selection
di�erently. The technologies so identi�ed will all produce six clones each to represent
the way reduced selection pressures within newly populated `niches' could allow the
better development and/or radical E�ects. Finally, the All Together mode of oper-
ation combines all of the other modes to explore how they interact. Although already
tested individually, individual transition experiments are also tested together to allow
for mutually reinforcing feedback loops to produce far greater e�ects.

The metrics There are three main metrics of interest in this model, each of which
has two subtly di�erent sub-metrics.

Problem solving success The ultimate goal of transition experiments is to solve
the problem of unsustainability. Problem solving success is usually measured in
an NK or �tness landscape model by how well randomly placed agents manage
to climb the highest peak in the landscape. Peaks are all equally tall in this
model and agents are not randomly placed, but a useful alternative would be
to measure how well the agents manage to climb all of the peaks available. The
recursive nature of the technologies means this model is quite resource intensive,
so rather than measure the amount of time needed to climb all peaks a better
metric is the percentage of all peaks in the landscape climbed within the fairly
arbitrary limit of 30 time steps.

Within this main metric, there are two relevant sub-metrics. The �rst measures
the percentage of peaks exactly reached within the time limit, which measures
how many of the peaks in the landscape have at least one agent with a product
that equals the peak's integer. However, since peaks can be sandwiched between
valleys, or even share their integer with a valley, it is important to measure how
many peaks are satis�ed in some way, even if not exactly reached. Thus, the
second sub-metric is the percentage of peaks satis�ed within the time limit, which
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measures how many peaks are the nearest peak to at least one technology agent,
regardless of how close that agent's product is to the peak integer.

Technology creation Despite the main goal of solving the problem of unsustain-
ability, a common immediate and short term goal of transition experiments is
to boost innovation, which is especially relevant for the Extra Innovation cases.
The �rst and most obvious sub-metric here is the total number of technologies

created. However, since the number of agents created is highly related to the
number of peaks available in the landscape, other important sub-metrics are the
number of technologies per peak in the landscape and the number of technologies

per satis�ed peak.

Radical to incremental ratios Finally, another common immediate and short term
goal of transition experiments is to boost the ratio of radical to incremental inno-
vations, regardless of whether the total number of innovations also rises, which
is most obviously relevant to the Extra Radical cases. Distinguishing between
radical and incremental innovations is not easy, especially as there are no mean-
ingful di�erences in Properties for most modes of operation. Just as in the real
world, E�ects are the easiest measures of radicalness. The two sub-metrics of
interest here are the number of technology with six or more o�spring and the

number of technologies used as a component 50 or more times.

1.3 Step Two - The visions, pathways and agenda

1.3.1 The visions

Transition theory and TM expect that some, if not all, of the experimental cases
will produce signi�cant chances in the metrics of interest (See Table 1.2) compared
to the control case. E�ectively, the transitions theory visions can be interpreted as
the alternative hypothesis in that the experimental manipulations are expected to
matter. For example, the Extra Innovation case is expected to produce a greater
number of innovations while the Extra Radical case is expected to produce a higher
ratio of radical to incremental innovations. The All Together case is expected to show
the greatest changes, especially in the number of peaks satis�ed.

Metric

Experimental case Problem solving success Technology creation Radical/incremental ratio

Extra Radical Slight increase Unclear Signi�cant increase

Extra Innovation Slight increase Signi�cant increase Unclear

Niche Protect Slight increase Slight increase Unclear

All Together Signi�cant increase Signi�cant increase Signi�cant increase
Table 1.2: The visions for each metric expected in each non-standard mode of operation as compared to
the standard according to the transition arena participant representing transitions theory or TM.
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All cases are expected to increase the number of peaks satis�ed within the time
limit, but direct or linear relationships are not expected. For example, a large increase
in total innovation compared to the standard mode of operation might only lead to
satisfying a few more peaks. Although there are good reasons to look at the number of
peaks satis�ed within the time limit, some experimental cases, like those created in the
Niche Protect mode, are expected to show more e�ect on the number of peaks reached
than on those satis�ed. The niche protection is meant to give �edgling innovations
a chance to develop in ways that allow them to competitively meet societal needs,
which suggests that the Niche Protect experimental cases will be particularly good
at reaching peaks once they have been approached but not necessarily superior at
approaching peaks compared to other experimental cases.

Chaos theory does not have such high hopes because this vision is, more or less,
aligned with the null hypothesis, where the experimental manipulations are not ex-
pected to matter signi�cantly (See Table 1.3). For example, the Extra Radical ex-
periment is anticipated to impact on the radical to incremental ratio for two reasons.
First, technologies are unlikely to share a nearest peak with their parent after the �rst
few time steps. Even in the purely incremental cloning of the standard model oper-
ation, o�spring quickly spread across the landscape with no need for extra `jumping'
a�orded by extra-radical Properties. Secondly, if the ratio of radical to incremen-
tal innovations is governed by a SOC, it will conform to a scale-invariant power law
distribution and will remain the same for 1000 agents or 100,000 agents.

Most of the metrics are expected to be shaped in some way by SOC, meaning that
they are likely to arise regardless of di�erences in initial conditions. The insensitivity
to initial conditions of SOC may seem at odds with the sensitivity to initial conditions
that chaotic systems are known for, but this con�ict is resolved by considering speci�cs
and generals. Simulation run speci�cs, such as the number of generations needed to
reach a given peak or the timing and size of waves of obsolescence within the active
repertoire, are low-level details which makes them sensitive to initial conditions and
will vary greatly. Simulation run generals, such as the ratio of agents with radical and
incremental E�ects or the number of peaks satis�ed, are higher level details which
makes them insensitive initial conditions and unlikely to vary.

The number of technologies created within the time limit is the only low-level
metric, making it the only one unlikely to be governed by a SOC and the only one
likely to vary much at all. However, the more technologies, the more likely they are
to land on a valley or exactly replicate the cost and product of another. Related
to this, this transition arena participant expects that more variation will produce
more selection, rather than less, and that less selection will produce less variation.
Importantly, this means that neither a greater number of innovations, nor a reduction
in selection for the Niche Protect cases, are expected to change higher level metrics
at all.
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Metric

Experimental case Problem solving success Technology creation Radical/incremental ratio

Extra Radical No e�ect Slight increase No e�ect

Extra Innovation No e�ect Slight increase No e�ect

Niche Protect No e�ect Slight increase No e�ect

All Together No e�ect Slight increase No e�ect
Table 1.3: The visions for each metric expected in each non-standard mode of operation as compared to
the standard according to the transition arena participant representing chaos theory.

1.3.2 The pathways

Speci�c paths cannot be prestated because the adaptive population of technology
agents is free to wander freely across the run-unique landscapes under the in�uence of
the chaotic and random elements. However, some general pathways can be imagined
because this model has a (semi-)closed and �nite system state space. Within that
system state space, the model is expected to moves from a State of one peaks satis�ed
(but not reached) to a State of almost all peaks satis�ed (with most reached), which
is almost surely an attractor created by model operation rules. Thus, this model is
expected to follow a classic transition pathway as the system output falls into the
attractors within the single state space.

That envisioned pathway can be further elaborated. The combinatorial explosion
built in to this model means that initially, agents will have a competitive advantage
for being the �rst to reach a new, unexplored peaks, regardless of how ine�cient their
product to cost ratio is. This would probably qualify as a �rst mover advantage.
After discovering and populating a peak, the �tness advantage falls to more e�cient
agents with a lower cost for a given product. The system output is therefore expected
to move from a State in which �tness is mostly a matter of �rst mover advantage
to a State where �tness is mostly a matter of e�ciency, measurable by a gradual
decrease in average cost. Were �tness to be judged di�erently, for example with a
penalty for the depth of recursion in the structure, then the pathway would have
been expected to move from a State of �rst mover advantage to a State of shallowest
possible structures. Any number of other possible ways to judge �tness would produce
any number of equivalent envisioned pathways which would be shared equally by both
transition arena participants.

However, the two transition arena participants are not in total agreement on all
aspects of imagined pathways. The transition arena participant represented by tran-
sitions theory or TM understands incremental innovation as re�nements of existing
technology, adaptations that improve an innovation's ability to solve a problem or
meet a need, or e�ciency gains. Thus, this transition arena participant would envis-
ages that technologies will be nearer to the peak that their parents are near to and
that parents will be booted out of position by their own o�spring. If the �ttest agent
for a given peak is examined over time, this transition arena participant would expect
the �ttest technologies agents to be clones of the formerly �ttest technologies except
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for when a valley lies between a parent and a peak. The chaos theory transition arena
participant, sees no useful distinction between radical and incremental innovations in
terms of their Properties, does not expect o�spring to be competing on the same peak
as their parent (after the �rst few time steps), and does not expect the �ttest agents
for a given peak over time to show any family lines.

As an interesting aside, the system state space is closed and �nite, with no capac-
ity for new dimensions or selection pressures to redirect the system output. Closed
systems normally go to a dynamic equilibrium, but this model might not. If left to
run as long as needed to reach all peak with total e�ciency7, then there would still be
SOC in the size of the active repertoire, and maybe in other system output. Testing
this is out of the question because of the heavy resource use of this model. Were it
possible to show, such a result would very strongly suggest that within even very sim-
ple models, with the strongest possible competition and the least room for variation,
system behaviour resists being idealised or simpli�ed as a dynamic equilibrium, but
remains strongly chaotic.

1.3.3 The agenda

The agenda is really only applicable to transition experiments that have a clear event
horizon to avoid. As with most ABM or alternative transition experiment platforms,
this model has no real place for an agenda, and the transition arena therefore has
nothing much to say about it.

1.4 Step Three - The transition experiments

As this chapter focusses most strongly on transition experiments, it should come as
no surprise that there are more of them in this chapter than in any other. The �rst
is, of course, a control experiment run with the standard model operation over a
range of parameters to create six experimental cases (See Table 1.4). This control
experiment provides a baseline comparison for the remaining experiments with non-
standard model operation.

1.4.1 Experiment one - Control

The parameters

The results In general, the model successfully replicates the behaviour of the logic
circuit model on which it is most closely based (Kasmire et al., 2012) and displays
signs of SOC. The �rst peaks are reached fairly quickly by technologies whose structure
contains only the primitive or �rst generation technology components while later peaks
are reached by technologies whose structure contains technologies created throughout
the run. Mapping the parent-o�spring network of a typical run reveals an organic

7One might even call such a situation peak-peak.
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Parameter Value Justi�cation

Time steps 30 Surprisingly short, due to combinatorial explosion
and intensive resource use

Repetitions 10 Surprisingly few, also down to the resource use

Max integer 1000 A nice, round number

Density of peaks 25, 50, 75 Early tests showed that extreme values prevented
successful runs

Density of valleys 25, 30 Allow one experimental case with valleys > peaks

Components in structure 10 A nice, round number

Competition level 3 Standard setting, governs how many agents per peak
produce o�spring

O�spring production 6, 3, 1 Standard setting, governs the rankings for o�spring
production

Change to structure for clones Incremental Standard setting, all o�spring have a change to 1
operator and 1 component

Niche protection O� O�spring production does not depend on how many
agents share a peak

Table 1.4: The parameter settings marking out six distinct experimental cases within the control experi-
ment.

structure (See Figure 1.3), with o�spring and uses per technology apparently following
power law distributions (See Figures 1.4(a) and 1.4(b)).

The active repertoire grows as the simulation continues, although it does not grow
in a simple or linear way and instead undergoes crashes that suggest its size could
be governed by a SOC (See Figure 1.5(a)). The number of peaks develops a classic
S-shaped curve over the course of the 30 time steps (See Figure 1.5(b)), meeting the
expected pathways of both transition arena participants. Cost e�ciency starts slowly
but later also shows a classic S-shaped curve, again meeting the expected pathways of
both transition arena participants, although not within the 30 time steps of a normal
run (See Figure 1.5(d)).

With more valleys, the �rst peak integers sometimes coincided with valley integers
or were blocked by valleys, which derailed the recursive technology build out process
and `crashed' the run. Over half of the runs with a valley density of 30% crashed,
showing spectacularly poor problem solving success, very low technology creation
numbers and very unusual radical to incremental ratios. Although this outcome
is further con�rmation that the Adder model is successfully replicating important
features of the models on which it is based, the crashed runs are very disruptive to
the metrics. Thus, the cases with 30% valley density will be left out of the remaining
analysis and will not be used in the rest of the experimental cases.

The remaining cases with 20% valley density provide the baseline behaviour for
each metric against which the remaining cases will be compared (See Table 1.5).
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Figure 1.3: By the tenth time step, the agents in a normal run have formed a very organic looking networks.
The primitive agent is highlighted in green and one particularly �t and proli�c agent is highlighted in pink.

(a) O�spring per parent agent (b) Uses per agent

Figure 1.4: Both o�spring per parent technology (1.4(a)) and uses per component technology (1.4(b)) show
power law-like distributions.

(a) Active repertoire
size

(b) Number of peaks
reached

(c) Average technology
cost within 30 time
steps

(d) Average technol-
ogy cost over longer
time frame

Figure 1.5: The active repertoire grows non-monotonically with some size crashes, reminiscent of SOC
(1.5(a)) while the number of peaks reached grows in a classic logistic curve (1.5(b)). Average technology
cost does not reduce within the 30 time step limit (1.5(c)), but does when left to run for much longer
(1.5(d)).
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The three cases within this control experiment lay out a range of results for each
metric. Unsurprisingly, the cases with the fewest problems were the most successful
at solving those problems within the 30 time step limit, although the cases with the
most problems were not the least successful at solving them. The technology creation
metrics and the radical to incremental ratio metrics also show a range of results, with
total technologies created clearly related to the number of peaks in the landscape.
The most interesting of these metrics is the exceptional radical to incremental ration
according to the number of technologies with 6 or more o�spring relative to those
without in the case with a peak density of 50%. A closer look at the individual runs in
this experimental case revealed a single run with an astonishing ratio of 4.23 proli�c
parents relative to all other technology agents. Although this speci�c run appears
to be an outlier, it is quite an interesting one since some transition experiments
are speci�cally interested in increasing increase the ratio of radical to incremental
innovations.

Finally, examining the �ttest technologies per peak over time in some of the spe-
ci�c runs that did not crash answered the disagreement between the transition arena
participants regarding success within family lines. The �ttest technologies per peak
were the o�spring of the previous �ttest technologies for that same peak only for
the peaks nearest the primitive agent and typically only for the �rst few time steps.
The �ttest technologies per peak for all other peaks and throughout most of the sim-
ulation were not direct clones of the previously �ttest technologies for that peaks.
This supports the chaos theory vision and the idea that incremental but combinato-
rial innovation does not necessarily entail incremental improvements toward the same
purpose or goal as the original.

Based on the standard mode of operation in this control experiment, and mindful
of the resource intensive nature of this model, I decided to avoid using a 30% valley
density and a 75% peak density in all future experiments. The remaining experiments

Metric Sub-metric % peak density 25 % peak density 50 % peak density 75

Problem solving
success

% reached 81 55 72

% satis�ed 97 63 77

Technology
creation

Technologies
total

39,048 68,605 98,731

Technologies/
landscape peak

156 137 132

Technologies/
satis�ed peak

161 216 171

Radical/
incremental
ratios

O�spring 0.049 0.622 0.06

Uses as
component

0.028 0.028 0.014

Table 1.5: The mean and standard deviation of peaks reached and approached per case.
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with non-standard modes of operation will thus focus on a narrower set of parameters
that cover only peak densities of 25 and 50% combined with 20% valley density.

1.4.2 Experiments two through �ve - Manipulating innovation

in a complex system

The parameters The �rst three non-control experiments have all but one of the
standard settings used in the control experiment or motivated by the results of that
control experiment. The �nal non-control experiment continues to use many of those
same standard settings, but includes all three of the individual changes used in the
other non-control experiments.

The results The non-control experiments also experienced some crashed runs. Al-
though these crashes in�uence the calculated metrics, they were regularly distributed
between the non-control experiments and were comparable in frequency to the crash
rate of the control experimental cases with 20% valley density. This suggests that
crashed runs are a part of normal model behaviour, and so were not excluded from

Parameter Value Justi�cation

Extra
Innovation

Extra
Radical

Niche
Protect

All
Together

Time steps 30 30 30 30 Same as control

Repetitions 10 10 10 10 Same as control

Max integer 1000 1000 1000 1000 Same as control

Density of peaks 25 and 50 25 and 50 25 and 50 25 and 50 Based on results of
control

Density of valleys 20 20 20 20 Based on results of
control

Components in
structure

10 10 10 10 Same as control

Competition level 3 3 3 3 Same as control

O�spring produc-
tion

10, 5, 3 6, 3, 1 6, 3, 1 10, 5, 3 Increased o�spring
production

Change to clone
structure

Incremental Radical and
incremental

Incremental Radical and
incremental

Increased di�erence
between parent and
clone

Niche protection O� O� On On Reduced selection
for underpopulated
peaks

Table 1.6: The parameter settings for all non-control experiments, each containing two experimental cases.

23



the analysis. The results for all experiments, including the control, are presented here,
grouped by the metric for easier interpretation.

Problem solving success metrics Success at solving (or nearly solving) societal
needs and problems is the ultimate aim of transition experiments, so the number
of peaks reached and satis�ed is the most important set of metrics (See Table 1.7).
Interestingly, there was no clear positive e�ect on either sub-metric from any of the
non-standard modes of operation as compared to the control when the peak density
was 25%. In fact, most of the transition experiment cases did worse than the control.
At the same time, all of the non-standard modes of operation did better than the
control when the peak density was 50%. However, there was little to choose from
between them and none of them did better than the high water mark set by the 25%
peak density control case.

Interestingly, the transitions theory visions expected the Niche Protect and All
Together modes of operation to do particularly well at reaching more peaks compared
to the control, but this was not shown to be true. The Niche Protect case with 50%
peak density tied for �rst and the All Together case tied for third among the cases
with 50% peak density, while the Niche Protect and All Together cases were the worst
and second worst cases of those with 25% peak density.

Technology creation metrics Both of the transition arena participants expected
that the technology creation metrics would show an e�ect from the various exper-
imental cases and these expectations were certainty borne out by the results (See
Table 1.8). As predicted, the Extra Innovation and All Together cases showed the
largest and clearest e�ects, increasing drastically for all of the technology creation
sub-metrics. Most of the other experimental cases performed roughly the same on
these technology creation metrics when compared with the control experiment, except
for the Niche Protect experiment which showed a slight increase for the number of
technologies created per landscape peak. Allowing the �ttest agents to produce more
clones (either in general or within the protected niches) leads to greater innovation
in total, even if this does not produce clear or straightforward bene�ts for problem
solving.

Radical to incremental ratio metrics Finally, the various metrics tracking the
ratio of radical to incremental innovations also failed to live up to the expectations

% peak density Metric Control Extra Innovation Extra Radical Niche Protect All Together

25
% reached 81 80 81 71 79

% satis�ed 97 97 97 88 97

50
% reached 55 72 80 80 72

% satis�ed 63 82 91 91 82
Table 1.7: The various metrics covering problem solving success for all experiments and cases.
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% peak density Metric Control Extra Innovation Extra Radical Niche Protect All Together

25
Technologies
total

39,048 116,602 36,902 36,626 68,705

Technologies/
landscape
peak

156 466 148 147 275

Technologies/
satis�ed
peak

161 480 153 167 284

50
Technologies
total

68,605 135,910 70,729 79,369 132,965

Technologies/
landscape
peak

137 272 141 159 266

Technologies/
satis�ed
peak

216 332 155 198 326

Table 1.8: The various metrics covering technology creation for all experiments and cases.

of the transition arena participant representing transitions theory (See Table 1.9).
This transition arena participant expected to the radical to incremental ratio to be
a manipulable value and also expected to see the greatest manipulation in the Extra
Radical and All Together cases where some technologies were created to be less like
their parent than normal.

Remember that metric for the number of technology agents with six or more
o�spring compared to all other technology agents had one particularly anomalous
run in the case with 50% peak density that distorted the average value. For this
reason, all of the other experimental cases with 50% peak density are far lower than
the control case. Setting this anomalous case aside and comparing all of the other
cases to each other, there are still no clear patterns suggesting that any of the non-
standard modes of operation have any signi�cant e�ect on the radical to incremental
ratio according to o�spring. Neither were there any more anomalous runs that might
hint at how an unusually large number of radical innovations might be created. The
same is generally true for the other sub-metric, the one comparing the number of
technology agents used as a component 50 or more times. Although there is a bit
more variability for this sub-metric, there are still no clear patterns suggesting any
consistent or meaningful e�ects from any of the transition experiments.

Another interesting result is that the two sub-metrics did not agree with each other
in relation to control experiment. Many cases showed that a rise in one sub-metric
could be accompanied by no change or a fall in the other sub-metric for the same
case. Further, comparing the various non-standard modes of operation showed that
a consistent change for one peak density was not re�ected in the other peak density.
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All of this suggests that the two sub-metrics are unlikely to be measuring the same
thing, even if they both seem to be measures of an innovation's radical E�ect.

1.5 Step Four - Learning

1.5.1 First order learning

The new knowns show that very few of the visions and expectations of the tran-
sition arena participant representing transitions theory or TM were met. Those that
were met were also shared by the transition arena participant representing chaos
theory, such as the expectation that the system would transition from a State of no-
problems-solved to a State of most-problems-solved as the system output discovered
and fell into the attractor created by the model operation rules. However, the re-
sults generally favoured the visions and expectations of chaos theory. This does not
de�nitively speak to the likely outcomes of transition experiments in the real world,
because these results do not prove that transitions or radical innovations are actually
governed by a SOC. However, they are very interesting in that they o�er one pos-
sible explanation for why transition experiments have not yet produces any clear or
signi�cant signs of the desired e�ects.

More speci�cally, the �rst new known that supports chaos theory is that purely
incremental development does not mean incremental progress toward a

solution on a given problem. This new known comes from examining the �ttest
agents per peak over time in the control experiment, which showed that technologies
continuously bumped each other out of the top ranks, but that the �ttest agents were
not replaced by their own o�spring. Instead, the combinatory nature of technolog-
ical development meant that (re-)de�ning a single operator and component allowed
technologies to take steps of variable length, in e�ect jumping all over the �tness
landscape.

The next important new known is that the low-level features of a system

are potentially malleable, as shown but the successful increases in the technology
creation metrics for many of the experimental cases. Unfortunately, another of the
new knowns is that the emergent, mid- and high-level features of a system

are resistant to change, regardless of whether these features are targeted directly
or indirectly through lower level changes, as show by the lack of changes seen in the
radical to incremental ratio and problem solving success metrics. This suggests two

% peak density Metric Control Extra Innovation Extra Radical Niche Protect All Together

25
O�spring 0.05 0.04 0.04 0.05 0.04

Uses ascomponents 0.03 0.02 0.02 0.06 0.01

50
O�spring 0.62 0.05 0.05 0.06 0.04

Uses ascomponents 0.03 0.04 0.02 0.02 0.05
Table 1.9: The various metrics covering radical to incremental ratios for all experiments and cases.
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things. First, that unlike the low-level features, emergent features of interest may be
governed by SOC that reliably arise over a wide range of initial conditions and that
consistently produce the same distributions and outcomes. Second, this also suggests
that variation and selection are not balanced against each other in a zero sum game,
but that an increase to one could be an increase to the other.

Yet another of the new knowns is that changes to the emergent, mid- and

high-level features of a system are often detrimental. Not only are these
system features resistant to change, but any change that does take place is only likely
to push them away from the edge of chaos where they operate most e�ectively. This
suggests that transition experiments aiming to improve on these mid- or high-level
system features, such as the Extra Radical case, are more likely to disrupt the SOC
governing the creation of radical innovations and make the situation worse.

Another new known to emerge from these experiments is the idea that radical
Properties are not linked in any meaningful or causative way to radical

E�ects, as shown by the poor radical to incremental ratios shown in the Extra
Radical and All Together cases that included some technologies with more radical
Properties. Related to this is the new known that identifying radical E�ects

is highly dependent on the selected metric, which suggests that the various
concepts grouped together under the category of E�ects are actually independent as
well as observer dependent.

The �nal new known to come out of these experiments is that cooperative or mu-
tual reinforcement between various experimental interventions cannot be

predicted, as most obviously shown in the fact that the All Together case performed
worse on most of the metrics than the individual intervention most closely associated
with that metric and sometimes performed worse than the control experiment with
no intervention. This does not mean that interventions or system manipulations are
incapable of interacting to form self-reinforcing behaviours, just that it may be much
more di�cult than expected to design interventions or manipulations that do so.

The new unknowns With every batch of new knows comes some new unknowns,
some of which are quite problematic. For example, the idea that variation and selec-
tion are not equal and opposite forces means that a new unknown surrounds whether
attempts to boost innovation might be counterproductive by boosting se-

lection at the same time. If more innovation only means more competition, then
it will produce the same number of winners relative to losers, but more losers in total.
Related to this, another new unknown relates to whether or not attempts to de-

crease, redirect or weaken selection pressures can only decrease, redirect

or weaken innovations. This might explain why SNM, subsidies, and other schemes
designed to subsidise, protect or support innovation by reducing selection have mostly
produced subsidy addiction and poorly developed, uncompetitive innovations.

The subjective nature of deciding whether any given innovation is radical or not
is a well recognised problem, but the knowns from these experiments suggest that
`radicalness' is not a property of the innovation at all, nor even the system in which
it is found. Instead, radicalness may only be an entirely subjective and relative im-
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posed as the result of observer dependent choices of measures applied within observer
dependent system boundaries, like `rich' or `old'. This means that another unknown
to explore relates to whether or not Properties or E�ects are entirely observer

dependent patterns with no important relation to the systems in which

they are observed.
The one of the most important new unknowns to come out of these experiments

is whether innovations are more like seeds or snow�akes or whether transitions
theory or chaos theory has a more accurate view of the real-world. Of course, the
answer does not have to be so binary. Causal relationships can co-exist alongside
SOC, each of which might be more or less important in di�erent (sub-)systems or
at di�erent points in time. However, the most important new unknown to emerge
from these experiments is perhaps whether or not we are prepared to accept

explanations without clear or meaningful causal relationships and that

cannot be used to improve in�uence or control?

Practical application and policy recommendations for theWestland-Oostland

Greenport These new knowns and unknowns have some important policy applica-
tions. The �rst of these is that attempts to increase the amount of innovation in a
system may be moderately successful, but attempts to manage or increase the propor-
tion of radical to incremental innovations or the number of problems that are solved
are unlike to be successful but likely to be detrimental. For example, local govern-
ments could easily spur innovation in the greenhouse horticulture sector by funding
all proposed innovation projects, but could only expect a small minority of them
to produce radical E�ects. However, a proposal to fund only `radical' innovations
would have to �nd a way to predict radical E�ects before they can be observed, when
subjectively determined radical Properties are not clearly linked in any meaningful
or causative way to the equally subjective radical E�ects. To make matters worse,
such an policy is likely to disrupt the normal mechanisms governing innovations and
might end up wasting time and money by stalling development of the targeted tech-
nologies and potential competitors, fostering subsidy addiction, and creating system
lock-in, as seems to be the case with CHP technologies (van der Veen, 2012). Thus,
policy-makers should avoid discriminating between innovations solely on the basis of
how radical their Properties seem to be and should instead embrace policies that sup-
port all innovation or innovations that have already demonstrated E�ects. Echoing
a practical recommendation of the last chapter, policy-makers are also advised not
to assume that various measures of radical E�ects are interchangeable or that they
actually measure any objective quality of the innovation. Also related to this issue,
policy-makers need to consider whether the costs and bene�ts of boosting innovation
are adequately distributed. Encouraging innovation might lead to risks falling unfairly
on those least able to withstand them but who had been encouraged to innovate when
otherwise would not.

One problem of �tness landscape models is that imply that agents solve exogenous
problems in a �xed solution space and in a static environment, while every solution
in the real world brings new problems to solve (Johnson, 2010; Kelly, 2010). Like the
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proportion of radical to incremental innovations, the proportion of problems solved or
nearly solved to those completely unsolved seemed very in�exible, resisting all changes
that were not obviously negative. Both of these issues could be governed by a SOC,
already operating at the limits of their capacity, suggesting that any interference can
only be negative. A Westland-Oostland Greenport would be the way that solving the
problem of uncertain crop production due to temperature �uctuation has created the
new problem of reliance on dwindling fossil fuels. Problems seem to just shift around
within a system, from being the problems of local crop producers or consumers to
become the problems to global residents. Thus, policy-makers are recommended to
consider how problems and problem solving e�orts are distributed, both throughout
the system and over time, when deciding how to approach new problems and solutions.

More practical issues arise from the evidence that emergent phenomena cannot be
predicted nor engineered. For example, one policy might require all growers in the
Westland-Oostland Greenport to install water storage capacity to mitigate �ood risks
while another encourages those same growers to employ water storage as a heat bu�er
to CHP units more e�ective and �exible. At �rst glance, the two policies seem to
push for the same thing, increased water storage, and so should reinforce each other
and lead to much greater water storage capacity than either policy alone. However,
�ood risk water storage cannot be easily be used to store heat while both types of
storage compete for investment and space, forcing growers to cut corners, comply
according to the bare minimum, spend more money than originally considered, or to
avoid meeting the policies as much as possible. It doesn't seem like they should, but
the two policies con�ict and work at cross purposes to reduce the e�ectiveness of both.
Policy-makers can not predict the interactions of all their policies8, but they do need
to be open to detecting problems in unexpected quarters and seeking advice widely
to understand who is most a�ected and when. Importantly, policy-makers should be
aware that the best intentioned interventions can still produce negative outcomes,
that those negative outcomes cannot be predicted, and that the best they can hope
for is to react appropriately when those outcomes become apparent.

Finally, some of the new knowns and unknowns from this mini-TM cycle do not
have such clear practical applications, but are nevertheless important for policy-
makers to consider. Many policies and plans are based on the idea that e�ects, either
desirable or not, have a clear cause that can be encouraged or avoided as needed. The
proposed cause-and-e�ect relationships seem intuitively useful and are very appealing,
not least because they promise a certain degree of prediction and control. For exam-
ple, governments may want to copy the success of some policy in a new context and so
will look for the crucial causative factors that drove the �rst success. Unfortunately,
wanting a given e�ect to have a reliable, reproducible and predictable cause does not
make it so. Policy-makers are therefore advised to consider that not all e�ects have
causes, in the way that causes are usually understood, and that �nding a cause does
not guarantee it can be manipulated to control the desired e�ects.

8Policy-makers surely know that two wrongs do not make a right, but they may not consider that
two (or more) rights do not always make a right.
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1.5.2 Second order learning

Re�ecting on the third step The results of the �rst order learning are then
applied re�exively to the entire TM cycle. As this chapter focusses on the third step
of the TM cycle, so too does the second order learning. Thus, the role of transition
experiments in advancing the sustainability paradigm and its paradigmatic map come
under the metaphorical microscope of second order learning.

Experiments are a scienti�c way of �guring out the `hows' and `whys' behind
observed phenomena, and they rely on pre-identifying and measuring, if not also con-
trolling, the important variables thought to be at play in the phenomena of interest.
Experiments also depend on that phenomenon being reproducible and on that phe-
nomenon being in�uenced by or otherwise interacting with some variables, although
not necessarily those identi�ed ahead of time. For this reason, mental operations and
other totally (at the time) unobservable events within people's minds were long consid-
ered inappropriate for scienti�c experimentation (Skinner, 1945). If some phenomena
is considered suitable for experimentation, then repetition and variable control are
necessary to allow statistical analysis to eliminate the errors, imprecisions, and indi-
vidual vagaries and reveal the underlying causes and regularities. Thus, transitions
and other high-level innovation E�ects are generally assumed to have causes that
can be discovered as well as in�uenced, managed or reproduced, even if those causes
are not easily observable or currently understood. However, second order learning
demands that these underlying assumptions must be questioned.

First, the assumption that important variables should be identi�ed ahead of time
and then measured and/or controlled is problematic for SOC and other chaotic be-
haviours. The factors that turn out to be important for any given SOC can only be
identi�ed after the fact, at which point control is totally impossible and even precise
measurement is di�cult. Even this post-mortem identi�cation of important factors
is complicated by the role of observer dependence, which tends to emphasise factors
that were present and noticeably changing over those that were important by their
absence or constancy. This explains why innovations with radical E�ects are so often
assumed to have radical Properties, even when those Properties appear for all the
world to be totally incremental while innovations with seemingly radical Properties
that fail to produce radical E�ects are generally ignored as inconvenient (Benford,
2010).

Next, the idea that experiments need to be reproducible is important for statistical
analysis as well as for scienti�c review from peers, but SOC are rare, follow power-law
distributions, and cannot be reproduced on demand because the `causes' identi�ed
after the fact tend to be very speci�c and context dependent. This is a problem for
the traditional statistical analysis which relies on normal distributions and measures
of central tendency to separate out the errors, imprecisions and vagaries from the
meaningful and in�uential factors. Without these traditional statistical analysis tools,
SOC defy all description, refuse to obey any rules, and remain doggedly unpredictable.
The speci�city, rarity, rule defying behaviour and unpredictability is also a problem for
scienti�c peer-review, which �nds it impossible to reproduce the necessary conditions.
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Those conditions associated with the SOC are as unique and unprecedented as those
associated with `normal' behaviour, all of which are impossible to reproduce. However,
attempts to reproduce those conditions must decide what aspects are important to
control and what are not, thus bringing observer dependence back in and allowing
lots of di�erences as long as the outcomes are `close enough'. All of this could help
explain why transitions and radical E�ects occur spontaneously throughout the world
and throughout history but have so far been impossible to produce through deliberate
e�ects and why a di�usion or transition that succeeded in one sub-system seems
impossible to replicate in another.

And �nally, experiments are about elucidating assumed cause-e�ect relationships,
and so are ill-suited to phenomena that do not have cause-e�ect relationships to di-
vine. Chaotic systems are still deterministic, so SOC and other chaotic behaviours
do have causes, but the causes of emergent e�ects involve every component and in-
teraction (or lack of interaction) throughout the entire history of the entire system
. Thus, the causes are, e�ectively, the whole of the system itself. This could ex-
plain why innovations with truly radical Properties, such as Mendel's genetic ideas or
Babbage's proto-computer (Johnson, 2010) have proved themselves genuinely useful
to modern eyes but were utterly ignored in their own time. Their value comes from
the entirety of the systems in which they are embedded, which made them incapable
of success in a system without the necessary supporting components (multiple ob-
servations of discontinuous inheritance for Mendel's genetics and mass-production,
generally accessible education and ready energy supply for Babbage's engines).

Without these assumptions, many of the knowns associated with transition exper-
iments began to fall apart. There is no longer any reason to link radical Properties
to radical E�ects through an innovation because those Properties can no longer be
considered objective qualities of the innovation nor can they be considered meaningful
`causes'. Indeed, the di�erences between radical and incremental become meaningless
when Properties are nearly impossible to investigate and when E�ects belong to the
entire system more than they belong to the innovation. Likewise, there reproducing
desirable E�ects loses meaning when all E�ects are totally and utterly unique or when
SOC ensure that some E�ect of equal magnitude will happen in due course without
any e�ort at all.

Most challenging of all, there may be no reason to continue searching for cause-
e�ect relationships behind innovations, di�usions, transitions and the other high-level
system behaviours of interest. These behaviours may not have the kind of `causes'
people usually think of as causes, which seems unsettling because the alternative is
generally understood to be randomness, or e�ect with no cause at all. However,
this is a false dichotomy. There are many non-random mechanisms for change that
do not have clear cause-e�ect relationships, such as evolution. These mechanisms are
unpredictable, unreproducible and unmanageable, but that unpredictability, unrepro-
ducibility and unmanageability is not a problem to solve so much as an just the way
things are. Stubbornly continuing to search for causes when there are none because
of ideological biases could be preventing any progress toward actual understanding of
how things are, as with those who reject evolution as an explanation for how things
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are simply because it does not meet their expectations of what such an explanation
should be like. More worryingly, a stubborn search for non-existent causes of a given
outcome may be making that outcome less likely.

Re�ecting on the map of knowns and unknowns Transition experiments set
out to �nd cause-e�ect relationships and so the results are interpreted as supporting
or failing to support particular cause-e�ect relationships, but not as supporting or
failing to support the search for cause-e�ect relationships. At its worst, this is a case
of the same `garbage in, garbage out' principle that plagues model building whereby
assumptions shape the tests and the tests con�rm the assumptions. The reliance
on pre-identifying important factors, reproducing desired phenomena and discover-
ing cause-e�ect relationships that underlies transition experiments harks back to the
classical paradigm. This might be surprising given that complexity and chaos �chal-
lenged Newtonian determinism and destroyed the beliefs in control and prediction,
emphasising the end of certainty and strongly criticising the reductionism approach�
(Grin et al., 2010, p. 138). CAS and its associated concepts successfully opened up
new topics for study and �in�uenced many other research �elds with insights on our
limited understanding of the world and on how to deal with structural uncertainties
. . . but it has not yet delivered a well-grounded and empirically tested new paradigm�
(Grin et al., 2010, p. 138). For many, complex or non-linear systems must still be
approached through the same basic experiments of the classical paradigm with a thin
veneer of CAS applied over the top. The classical paradigm goals of total control and
prediction became the CAS goals of `improved in�uence' and 'reduced uncertainty'.
Supply networks, for example, are generally recognised as complex systems, but the
literature on their management continues to emphasise increased predictability and
control through the creation of negative feedback loops to reduce their dimensionality,
complexity, dynamics, and emergent properties (Choi et al., 2001).

Whether or not CAS is recognised as a new paradigm at this point in time is
immaterial for a couple of reasons. First, those living through a scienti�c revolution
are not well placed to identify the paradigm shift, nor to spot which ideas and concepts
will get the boot, which will remain with modi�cations, and which up-and-coming
ideas will come out on top (Kuhn, Thomas, 1970). Second, scienti�c revolutions
happen at all scales. Even one scientist or scienti�c �eld that feels a CAS revolution
means that CAS can be called revolutionary. Exactly how many scientists or scienti�c
disciplines have to share that view in order for it to be inarguably classed as a scienti�c
revolution is unclear, and probably unimportant. That number will surely change
over time, so again, the revolutionary nature of CAS is best left for history to judge.
But the third reason is the most important. If there is no longer any meaningful
distinction to be made between radical and incremental innovations, then there should
be no meaningful distinction between revolutionary science and normal puzzle-solving
science. All science changes the entire system and moves it irreversibly into a totally
unprecedented and unique state. Any di�erences between one state and another are a
matter of observer dependence, so that one scienti�c discovery can seem revolutionary
to some and not to others. The many individual scienti�c discoveries that do not
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seem to trigger a paradigm shift nevertheless contribute to every paradigm shift that
happens for the rest of the future. Every paradigm shift would not have happened, or
would not have happened in quite the same way, without each and every one of those
seemingly non-revolutionary scienti�c contributions, even the ones that seem to work
counter to those that are most closely linked to that eventual revolution. Therefore,
it is not important whether CAS is seen as a new paradigm or not, or whether the
next generally recognised paradigm is closely associated with CAS or not.

But the problem runs much deeper than whether or not transition experiments
are searching for classical paradigm-esque cause-e�ect relationships, because almost
all experiments are predicated on the idea that variables can be identi�ed, measured
and controlled to reveal predictable and manageable cause-e�ect relationships. That
is just good science, according to the scienti�c method and, it could be argued, the
de�nition of science. CAS may or may not become generally recognised as a paradigm
changer, but even if it does there is no guarantee that it can ever change the high-
level paradigm that de�nes the `proper role of science`. As the Carl Sagan quote at
the beginning of the chapter says, science is not a body of knowledge but a way of
thinking. Now, that way of thinking is based around the statistically derivation of
cause-e�ect relationships in order to predict, in�uence, manage or control the future,
all of which are hard concepts to relinquish because they o�er the hope of eventual
prediction and control.
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