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Abstract

Learning, rationality and the reduction of uncertainty are generally understood

to contribute to better problem solving, both by allowing more problems to be

solved and by solving those problems more efficiently. Consequently, learning,

rationality and uncertainty reduction are directly embedded in the scientific

method and other problem solving frameworks. Nevertheless, some agent-based

models of problem solving suggest that learning, rationality and uncertainty

reduction can be detrimental to long term problem solving by increasing prob-

lem solving efficiency at the expense of the ability to solve more problems.

This paper presents a new agent-based model that draws on previous models of

problem solving to further explore the relationship between learning, rationality,

uncertainty reduction and problem solving. The results show that uncertainty

reduction improves problem solving efficiency but not the number of problems

that are solved, and further suggest that learning can increase as well as decrease

uncertainty with the key to complete and efficient problem solving hinging on

the balance between uncertainty growth and reduction.
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agent-based models, fitness landscapes

1. Introduction, background and specific question identification

Introduction. Modelling problem solving in complex, socio-technical systems

often visualises the problems and their potential solutions as a metaphorical

landscape. The elevated regions of the landscape represent societal needs, such

as transport, communication or housing, while every point on the surface of5

the landscape represents a potential solution or technology, including devices,

processes, behaviours, or other innovations [1]. The elevation of each point rep-

resents its ‘fitness’, or how well that solution or technology satisfies the nearest

societal need. The highest points represent solutions or technologies that best

meet a given societal need while nearby but lower points representing solutions10

or technologies that meet the same need but do so less well. In this metaphor,

problem solving is a matter of landscape exploration to locate the elevated re-

gions and reach the peaks.

Although it may not be immediately obvious, this view of problem solving

as landscape exploration requires learning in some form. Learning is a matter15

of acquiring or synthesizing new information that adds to, modifies or rein-

forces existing knowledge, behaviours, skills, values or preferences [2], either by

incorporating many and diverse sources of information at once or by accruing

information over time. The acquisition or synthesis of new information increases

understanding or reduces uncertainty about the landscape, allowing the learner20

to identify elevated regions and compare different landscape points. Further,

without learning, any solutions could not be remembered or retained, meaning

that the problems could not really be described as solved. Since problem-solving

requires learning, then it might seem reasonable to expect that more learning

means better problem solving. However, some modelling experiments [3, 1] cast25

doubt on the validity of this conclusion. At the very least, the relationship

between learning and problem solving warrants more investigation.
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Background. The metaphorical landscape view of problems and problem solving

is generally based on the NK model [4] which consists of a solution space defined

by the parameters N and K and agent(s) that move through that space searching30

for ‘better’ solutions. In management and innovation literature, N typically

represents the number of decisions that have to be made and the number of ways

different ways to make those decisions [1]. Each point in that space represents

a unique combination of decisions, so N can be understood as defining how ‘big’

the landscape is. The K parameter controls how interconnected these decisions35

are and determines the topology of the landscape. When K is as low as possible,

all decisions are totally independent of each other and each has its own optimum.

The single point where all of those individual optimal decisions intersect is the

global optimum, which appears as the highest point at the top of a single peak

in the landscape. Points which have most but not all of the individually optimal40

decisions will be near to the global optimum but at slightly lower elevations on

that single peak while the least optimal combinations of decisions have the lowest

elevations possible. As K rises, the decisions become interdependent, meaning

that there is no longer a single optimal solution or a single highest point in

the landscape. Instead, the landscape grows more rugged, with multiple high45

points, each representing a combinations of decisions that is locally optimal.

The ruggedness of the landscape also means that points near to the peaks have

many of the same decisions but may or may not have similar elevations (Figure

1). Real-world problems are often part of complex socio-technical systems with

multiple interdependencies and so are not often well represented by low K fitness50

landscapes.

Agents are typically incapable of learning or rational behaviour and instead

move randomly across the landscape in search of the peaks through ‘steps’ (alter-

ing one decision at a time to move between adjacent points) or through ‘jumps’

(altering several decisions simultaneously to arrive at new, non-adjacent posi-55

tions) [1]. Regardless of how they move, applying selection pressure drives the

entire population up the peaks to produce seemingly rational, functional and

order-driven behaviour [5]. The learning in this case takes place at the abstract
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Figure 1: A set of fitness landscapes ranging from very low K (one large peak) to quite high

K (many peaks of varying heights).

population level, is unlikely to discover the global optimum efficiently, and is

most successful when agents are numerous and well scattered than when they60

are few or clustered. Relying entirely on population level learning highlights the

contingency, agency and social construction of any solutions discovered while si-

multaneously downplaying or completely removing rationalism or functionalism

for the individuals [1].

Unlike the modelled agents, humans trying to solve real-world problems in65

complex socio-technical systems and have reasons for what they do [6], are

rational and can learn about problems and solutions. Human rationality is

‘bounded’ rather than perfect [7], meaning that searches for possible solutions

are based on imperfect knowledge and ‘satisficing’ search strategies that stop

the search when an option is found that seems like an improvement over the70

current state or that meets some minimum criteria [8]). Learning may not be

able to change the satisficing search strategies, but if it increases understanding

or reduces uncertainty [9] about the problems or the available means by which

those problems might be solved, then learning improves the ability to plan and

manage progress toward solving problems or developing technological solutions75

[10]. Populations of rational and learning agents should be as good or better at

solving problems in high K fitness landscapes than populations of agents that

are not capable of learning or rational behaviour.

However, testing that expectation produces mixed results. For example,

Knudsen and Levinthal (author?) [3] experimented with populations of bound-80
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edly rational agents capable of learning about the fitness landscapes as they

searched. They found that agents with perfect knowledge of the landscape and

the options it presented quickly and efficiently reached a local optimum, but then

behaved very conservatively and stopped moving rather than ever step downhill

to find the global optimum. Their chances of finding the global optimum was85

just as contingent and subject to their initial position as the populations of ir-

rational and learning-free agents guided entirely by selection pressure. Knudsen

and Levinthal also found that agents with less perfect knowledge of the land-

scape and the options for moving across it behaved much less conservatively, so

that they usually moved uphill but sometimes took downhill steps that allowed90

them to escape local optima. Although these less knowledgeable agents some-

times ended up at very low elevations, their risk-taking behaviours tended to

robustly self-correct so that they eventually clustered near the global optimum.

Essentially, the less knowledgeable agents were more likely to find the global op-

timum than the agents with perfect knowledge, but were much slower at finding95

their ultimate peak. What’s more, hill climbers that start with poor landscape

knowledge but improved that knowledge by learning from experience changed

from being risk-takers to being conservatives, meaning that they gradually lost

the ability to escape local optima.

Rapid and efficient discovery of local optima is only ‘better’ than slow and100

inefficient searches in low K landscapes where the local optimum is also the

global optimum [3]. At the same time, finding the global optimum in a high

K landscape is only ‘better’ if speed or efficiency is not important. Since real-

world problems are likely to be better represented by high K landscapes, this

rather counter-intuitively suggests that less knowledge, less perfect rationality105

and less learning are preferable for solving problems in complex, real-world,

socio-technical systems. On the hand, the scientific method and other rational,

learning-based approaches are usually advocated for problems identified as very

urgent, such as unsustainability [9]. Unfortunately, problems like unsustainabil-

ity are likely to be both complex and urgent, suggesting that they need to be110

approached with both more and less knowledge, rationality and learning.
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The specific question identification. How can the conflicting demands to both

increase and decrease knowledge, rationality and learning be reconciled? Per-

haps the answer lies in the idea that a little learning or knowledge is more

dangerous than much learning or knowledge would be [11]. Looking at the is-115

sue more closely, rational progress toward technological development or problem

solving is suggested to require knowledge of the problems to solve and the means

of solving those problems [10], but Knudsen and Levinthal’s agents did not only

knew about problems in the form of knowledge about the landscape. Ratio-

nality combined with limited landscape information drove the agents up the120

first hill they encountered, severely limiting their experiences and opportunities

for learning. More importantly, the agents were incapable of knowing, learning

about or controlling the means of problem solving, which can be interpreted as

how to control movement across the landscape. Because they were only able

to step, Knudsen and Levinthal’s agents would be unable to reach the global125

optimum if it required some downhill steps, even if they had perfect knowl-

edge about the entire landscape and could unambiguously identify the global

optimum.

Of course, innovations can incorporate multiple changes at once. Further,

the combinatorial nature of technological evolution means that even a very130

small, single change, such as replacing or duplicating a single component, can

produce unexpected and far reaching results [12]. This suggests that problem

solving through the use of innovations and technologies is not well represented

by a landscape exploration where all steps are the same size. Adding a rep-

resentation of combinatorial evolution allows the traditional fitness landscape135

model of problem solving to include steps of variable length [13]. Rationality

and learning can then be added to create a new model of problem solving that

allows agents to learn not only about the landscape but also the ability to move

across it in different ways.

By adding more capacity to learn, rather than less, this new model of prob-140

lem solving may allow rational, learning agents to solve problems that are both

urgent and complex through learning-focussed approaches such as the scientific
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method. On the other hand, if the agents are still incapable of improving both

the speed and thoroughness of problem solving, then the roles of learning and

rationality may need to be re-evaluated.145

2. The model structure, operation, variable parameters and metrics

Structure. The model structure consists of a landscape, technologies and a ra-

tional and learning developer agent. The landscape is created by a peak density,

valley density and maximum integer, all supplied by the modeller prior to initial-

isation. Peaks represent societal needs or problems to solve, such as transport,150

housing or communications. Valleys represent impossible or unworkable dead

end technologies such as glass hammers, chocolate teapots or perpetual motion

machines. When the model is initialised the peaks and valleys are randomly

allocated according to their respective densities to integers between one and the

maximum integer, which can be understood as the ‘size’ of the landscape. In155

this way, the peak density, valley density and maximum integer interact to de-

termine how high or low K the landscape is. When a peak or valley is allocated

to an integer within the landscape, that integer is added to a list so that the

landscape is represented by two lists of integers, one for peaks and one for val-

leys. There are no restrictions on the numbers that can appear on the two lists,160

so that sequential numbers can both be peaks, valleys or one of each. Further,

any given number can be both a peak and a valley, representing a perfect but

unattainable solution to a societal need.

The technologies each have a structure composed of a fixed number of com-

ponents, as set by the modeller before initialisation, separated by the operator165

+. The first technology, called the primitive, is created before the simulation

starts and has one component defined as a ‘1’ with all other components de-

fined as ‘null’. Summing over a technology’s structure yields its product, which

is compared to the lists of peaks to determine the nearest peak. The nearest

peak represents the societal need that the technology satisfies and the distance170

between the technology’s product and that peak integer represents how well that
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need is satisfied by that technology. If a technology’s product exactly equals

the integer of its nearest peaks, then that peak is considered to be reached or

exactly satisfied.

All non-primitive technologies are created during the simulation by devel-175

oper agent who redefines some of the null components as the entire structure of a

previously created technology. For example, at the first time step the only exist-

ing technology is the primitive, so the developer creates the first non-primitive

technology and embeds the entire structure of the primitive technology as a

component in place of at least one of the null components. In this way, tech-180

nologies are built recursively out of previously existing technologies and can be

used as components in the construction of later technologies. The product of

these non-primitive technologies still sums over the entire structure, including

all the recursive levels. In this way, small structural changes can potentially pro-

duce a large changes in the product, effectively ‘jumping’ across the landscape185

to approach entirely new peaks.

There is only one rational developer agent who learns about the landscape

and the technologies available for use as components and who controls the con-

struction of new technologies. This agent begins with a (possibly inaccurate)

perception of at least one of the integers on the list of peaks and a variable grasp190

of the products of existing technologies. The developer agent uses this knowl-

edge to rationally develop new technologies that exactly reach recognised peaks

using as few components as possible and in so doing, improve his knowledge of

the peaks and the existing technologies.

Operation. The model operation consists of several basic steps performed at195

every time step including selecting a problem to solve, testing out possible solu-

tions, attempting one of those solutions, and learning from the attempt. First,

a list of ‘peaks to aim for’ is compiled of all peaks that are known to the devel-

oper agent but that have not yet been reached. Any peak that is the nearest

peak to any existing technology’s product is known to the developer and so200

will feature on the list (unless it has already been reached). At the beginning
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of the simulation, the only peak known to the developer is the peak closest to

the primitive technology. When reached, peaks are removed from the list and

replaced by the next closest peak to ensure that the list of peaks to aim for

cannot be empty unless all peaks have been reached. New peaks can also be205

added to the list of peaks to aim for if the developer agent creates a technology

whose product overshoots the intended peak to the point that it sits closer to

an unidentified peak than to the one at which it was aimed. This means that

the list of peaks to aim for is a two-dimensional space with the potential to

grow non-monotonically, representing the way technological ‘frontiers’ advance210

over time as new technologies open up new combinatory possibilities and create

new needs [14]. After the list of peaks to aim for is created, the developer agent

selects one to aim for.

Next, the developer agent uses his knowledge of the existing technologies’

products, again tempered by uncertainty as set by the modeller, to find the one

that seems closest to the selected peak and which does not exceed the maximum

number of components. The developer agent calculates the distance between

the selected peak and the product of the selected technology according to the

expression:

Peak ± Upeak − ProductSelected ± Uproduct

where Peak is the the estimated integer of the selected peak, ProductSelected

is the estimated product of the selected technology, and Upeak and Uproduct are

uncertainties for the individual peak and product in question. The developer

then clones the structure of the selected technology to create a new technology

and experiments with temporarily adding the structure of up to ten technologies

as components according to:

Peak ± Upeak − ContributionPotential ± Ucontribution

where ContributionPotential is the estimated product of the new technology

after the component structures have been added and Ucontribution is the as-215

sociated uncertainty for those component structures. The developer agent’s
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goal is to get as close as possible to the selected peak using as few compo-

nents as possible. If components are found that seem to reduce the distance

between the selected peak and the product of the new technology, then those

components are permanently added to the structure of new technology so that220

ProductModified = ProductSelected + ContributionPotential.

The newly created technology is then compared to the list of valley integers

by summing across the components, one at a time. At no point is that sum

allowed to equal a valley. For example, if ‘3’ is a valley integer but ‘4’ is not,

combinations 2+1 and 2+1+1 would not be viable, while a combination of 2+2225

would ‘leapfrog’ the valley and would be viable. Viable technologies are added

to the set of available and existing technologies and can be later used as a

selected technologies or as potential components. The actual product of viable

technologies is compared to the list of peak integers to see if a peak has been

exactly satisfied so that the list of peaks to aim for can be adjusted as needed230

for the next time step.

As the developer agent selects peaks and tests components, he gains ex-

perience of both that reduce his uncertainty and allows him to learn. The

uncertainty associated with the products of each technology and of each peak

location diminishes according to a standard learning curve model,

U = Ui(x + 1)log2b

where Ui is the initial uncertainty, x the number of times a technology has

been used as a component or a peak is selected, and b the relevant learning

percentage as set by the modeller. With this learning curve built into the

model, the initial uncertainty for a peak decreases each time the developer tries235

to satisfy it and the initial uncertainty for the product of a technology is reduced

each time the developer tries to use it as a component. The higher the learning

curve is set, the more the uncertainty is reduced with each attempt or use, so

that an 80% learning curve reduces the initial uncertainty faster than a 20%

learning curve. Thus, after the technologies are tested for viability and the list240

of possible peaks is adjusted, the relevant uncertainties are reduced and the time
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step ends. Although it is a simplification, the developer agent has no knowledge

of or capacity to learn about about valleys. This is meant to represent the way

why some endeavour has failed is often not clear until success has been achieved

through other means.245

The variable parameters and metrics. Many parameters in this model can vary,

but will be held constant. These parameters include the maximum integer for

defining the landscape, the maximum number of components that can be added

in the creation of a new technology, or the maximum number of components

that a technology can have. This minimises the analytical complexity so that250

the parameters of most interest can vary. The parameters to vary fall into three

categories:

K of the landscape The density of peaks and valleys are both individually

tunable to create landscapes of varying K. The lowest possible K land-

scapes come from low densities of both peaks and valleys and the highest255

K landscapes come from high densities of both. Mid-K landscapes can

be created through mid-range densities for both peaks and valleys or by

having a high density for one and low density for the other. Preliminary

testing suggests that problem solving is poorest when valleys outnumber

peaks, but one such case is included for thoroughness.260

Uncertainty The location of peaks and the product of technologies are both

obscured by uncertainties, which can range from zero to 100% indicating

that the developer agents can be completely certain, completely uncer-

tain, or anything in between, before he begins to act. These uncertainties

can be set individually, so that the developer agent can be very uncertain265

about the location of peaks but far less uncertain about the product of

technologies, or vice versa. Varying them individually would make inter-

preting the results considerably more difficult, so they will instead vary in

unison across the entire range.

Learning Like the uncertainties, the rate at which experience reduces the un-270
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certainty of both the peaks and the product of technologies can be set

individually. This would allow the developer agent to learn more quickly

about either the needs or the means of reaching those needs. Also like the

uncertainties, the learning rates can range from zero to 100%, meaning

that the agent could be completely incapable of learning or could become275

totally certain after a single learning experience. Just as with uncertainty,

changing the rate of one kind of learning without a similar change to the

other would complicate the analysis. To avoid this, both learning rates

will change in lock step. However, the entire range will not be explored

as the extremes are both unrealistic and unhelpful for understanding how280

learning interacts with initial uncertainty and landscape complexity.

An important point to note is that setting the initial uncertainty to 0% means

that there no learning is possible at all, regardless of how the learning rates are

set. This means that all cases with 0% initial uncertainty are equivalent.

The metrics. Although this model uses the fitness landscape metaphor, the285

way that the landscape is represented means that the usual concepts of local

and global optima do not apply. The peaks can all be understood as being of

equal height, although the way they are clustered or scattered across the entire

landscape will mean that their slopes are not equally steep. Further, landscape

explorers in classic fitness landscape models begin exploring from random points290

on the landscape while the explorers in this model all begin at the peak closest

to the primitive technology after which each success introduces the next new

peak to aim for. In light of this, the developer agent’s problem solving ability

is better judged on how much time is required to reach the summit of all peaks

rather than on the ability to reach the summit of any specific peak. Thus, one295

possible metric might be the number of time steps needed to create a technology

that exactly satisfies all peaks in the landscape.

However, preliminary tests suggest that this metric will not work. First,

the presence of valleys means that some peaks will be much more difficult to

reach than others. A peak sandwiched precisely between two valleys will, for300
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example, be much harder to reach by virtue of not allowing any near misses. In

fact, a peak and valley can even share an integer, meaning that very rarely, an

identified and imperfectly satisfied peak will be impossible to precisely satisfy.

This suggests that the number of peaks that are identified and approached,

even if never successfully reached, could be an important alternative measure of305

success alongside the more obvious number of exactly reached peaks. Second,

the depth of recursion involved in this model is so resource intensive that it

is completely infeasible to let the model run until all peaks are identified or

satisfied appears to be completely infeasible. Even with very low K landscapes,

the model did not manage to identify or satisfy all peaks within 100,000 time310

steps. This suggests that a less resource intensive metric would be the number

of peaks satisfied (exactly or inexactly) within a fixed number of time steps. The

preliminary tests showed that many peaks had been satisfied by the 25,000th

time step and that letting the simulations run on beyond this did not alter

the number of peaks satisfied. Thus, one metric will be the number of peaks315

approached and/or reached within the fairly arbitrary limit of 25,000 time steps.

Next, second metric is needed to cover the efficient creation of technologies.

Developer agents with accurate information about the landscape and existing

technologies’ products should be well placed to create new technologies that ex-

actly reach an identified peak. Developer agents with less accurate information320

are more likely to create technologies that might be viable but do not exactly

satisfy the identified peaks. Thus, developer agents with poorer knowledge or

learning are expected to create more technologies in total and to need more

time steps to exactly reach those peaks. Therefore, a second metric will be the

number of viable agents created during the 25,000 time steps. This metric can325

be further broken down into the number of viable agents created per peak in

the landscape or per peak reached and/or approached, should the number of

peaks reached and/or approached be very different to the number of peaks in

the landscape. The two metrics together measure problem solving completeness

and efficiency, which cannot be entirely separated when a time limit is imposed.330
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3. Experimental parameters, expectations and results

Parameters. The experimental parameters create 42 unique experimental cases

(3*2*4*2=48-6 to remove the duplicate cases with 0% initial uncertainty). Each

of these cases is repeated 10 times and the results averaged. For easier interpre-

tation, results are presented from three distinct sets of cases, each representing335

a landscape category. The first landscape category covers the lowest K land-

scapes, where peak and valley densities are both 1%. With the maximum integer

set to 1000, this produces 10 peaks and 10 valleys scattered across what might

be called a sparse landscape. Zero K landscapes are trivially easy to explore,

so this low K landscape still has multiple peaks and valleys. The second land-340

scape category consists of the cases with the highest K landscapes, where peak

density is set to 50% and valley density is set to either 1 or 20%. As the max-

imum integer does not change, this produces two very rugged landscapes with

500 peaks, although one is more rugged than the other by the inclusion of 190

additional valleys. The final category consists of case with a mid-K landscape,345

where peak density is set to 25% and valley density set to 1% for a total of 250

peaks and only 10 valleys. Other cases could be considered as mid-K landscapes

and therefore could have been included in this final set, but the selected case

was both representative and interesting without overcomplicating the analysis

too much.350

Each landscape category contains all the different cases created by varying

initial uncertainty and rate of learning. Four levels of initial uncertainty cover

the entire range possible, from zero initial uncertainty to 100% initial uncer-

tainty. Two mid-range values are included, at 40% and 80% uncertainty, to

better explore the range. The extreme ends of the learning rate were not in-355

cluded as these were neither realistic nor interesting for addressing how the rate

of learning interacts with problem solving in complex systems. Thus, there are

only two rates of learning, at 20% and 80%.

Expectations. The specific question addressed in this work is whether or not

additional areas of learning improves rational problem solving in all kinds of360
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Parameter Value Justification

Time steps 25,000 Motivated by preliminary testing

Runs 10 Allows results of each case to be aver-

aged over multiple runs

Max integer 1000 A nice, round number which produces

easily calculable numbers of peaks and

valleys

Density of peaks 1, 25, 50 A range of densities to capture land-

scapes of varying K

Density of valleys 1, 20 Allows landscapes of varying K with-

out many cases with more valleys than

peaks

Maximum components in structure 50 A nice, round number

Maximum components to be added 10 A nice, round number

Uncertainty of peak locations 0, 40, 80, 100 Both extremes and some in between

Uncertainty of technology products 0, 40, 80, 100 Varies in unison with peak uncertainty

Learning curve for peak locations 20, 80 Slow and rapid learning, while avoiding

extremes

Learning curve for technology products 20, 80 Varies in unison with peak learning

Table 1: The parameter settings for the experimental cases
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problem landscapes. Without the ability to make or learn about making variable

length steps, a low K landscapes was best approached through better knowledge

or more learning while a high K landscape demanded poorer knowledge and less

learning. The introduced ability to move with variable length steps and to learn

about those variable steps in order to control them may resolve the conflict by365

allowing both efficient and complete learning in landscapes of varying K. The

expectations can be operationalised as null and alternative hypotheses.

The null hypothesis: the added features will produce no change. . This hypoth-

esis suggests that adding combinatorial evolution to replicate variable length

steps and allowing the rational developer agent to know and learn about both370

the problems and the means by which they might be solved will not change

the problem solving behaviour seen in models without these added features. In

effect, this hypothesis says that problem solving will continue to be either rapid

or complete, but not both, for all fitness landscapes expect those that are very

low K. Specifically regarding the two metrics, the null hypothesis foresees that375

experimental cases with no initial uncertainty will be the most efficient at cre-

ating technologies that exactly satisfy peaks, but the worst at satisfying all of

the available peaks. This hypothesis also expects that the cases with low initial

uncertainty and/or rapid learning will be efficient and so will produce relatively

few technologies in total, but will only be able to satisfy a majority of peaks380

in very low K landscapes. Experimental cases with greater initial uncertainty

and/or slower learning would be expected to be less efficient, and so produce

more technologies, but to satisfy most peaks in both high and low K landscapes.

The alternative hypothesis: the added features will produce a meaningful change.

. This hypothesis suggests that adding combinatorial evolution to replicate385

variable length steps and allowing the rational developer agent to know and/or

learn about both the problems and the means by which they might be solved

will improve problem. This hypothesis posits that the experimental cases with

no initial uncertainty should be able to take advantage of the added capacity to

make variable steps and should be excellent at reaching all or almost all of the390
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peaks and should also do so very efficiently. This hypothesis also expects that

low initial uncertainty and/or rapid learning will create a search strategy that

is both reasonably efficient and reasonably complete in all landscapes, although

perhaps not as good as the cases with zero initial uncertainty. Specifically for

the two metrics, this hypothesis suggests that the most peaks satisfied and most395

efficient number of technologies per peak will be found in the case with no initial

uncertainty, followed by the cases with low initial uncertainty and/or rapid

learning. The experimental cases with high uncertainty and/or slow learning

are expected to satisfy fewer peaks and to produce far more technologies during

the process.400

3.1. Results

Low K landscapes. Both hypotheses agreed on many expectations in the low K

landscape, such as the relatively efficient creation of technologies in cases with

lower initial uncertainty and/or rapid learning. They also both expected that

the majority of peaks would be satisfied for both rates of learning, but they did405

not agree on the expectations for the case with zero initial uncertainty. This

case, with no need or possibility for learning, met all expectations regarding

the efficiency of technology creation, but only managed to satisfy a minority

of the peaks. Graphing the viable technologies as a network shows a chain-

like structure (See Figure 2) without any branches or dead ends. Each agent410

appears to be successfully cloned precisely once as the developer agent makes

totally rational progress toward each peak in turn until the developer reaches a

point beyond which he can do nothing. By reaching each selected peak exactly,

the developer never accidentally identifies any peaks and only becomes aware

of one new peak at a time. The totally efficient technology creation also means415

that the developer has a very limited number of technologies to clone or use as

components and may be unable to leapfrog a valley. In this case, it appears

that rational efficiency is his greatest strength but also his greatest weakness by

preventing him from making a complete exploration of the landscape, supporting

the null hypothesis.420
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1% peak density, 1% valley density

Learning None Slow Rapid

Initial uncertainty 0 40 80 100 40 80 100

Tech agents 7.1 70.5 1148.1 136.7 46.9 66.2 29.5

Tech agents/ peak .7 7.1 114.8 13.7 4.7 6.6 3.0

Peaks satisfied 4.1 3 8.6 6.2 6 8.3 6.4

Reached/approached 3.1/1.0 1.6/1.4 4.4/4.2 1.9/4.3 4.6/1.4 5.4/2.9 4.3/2.1

Tech agents/ 1.7 23.5 133.5 22 7.8 8.0 4.6

satisfied peak

Table 2: Mean values for the lowest possible K landscape with 10 peaks and 10 valleys.

Figure 2: A typical network created in a low K landscape with zero initial uncertainty. The

primitive agent is marked in black and all agents are labelled with their who number, indicating

the order in which they were created.

Figure 3: A typical network created in a low K landscape with non-zero initial uncertainty,

with the primitive agent marked in black.
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With some initial uncertainty, the developer agent made mistakes that lead

to discovering additional peaks accidentally. As the learning reduces his un-

certainty about identified peaks and existing technologies, he becomes aware of

new peaks to be uncertain about. Thus, the mistakes allow the number of things

about which he is uncertain to grow faster than the existing uncertainty reduces.425

In this low K landscape, there are very few peaks about which the developer

agent can be uncertain, so it is perhaps not surprising that all but one of the

experimental cases with rapid learning reached more peaks than the equivalent

cases with slow learning. Furthermore, the cases with rapid learning created far

fewer technologies, illustrating how a well informed or rapidly learning rational430

developer can apply his superior knowledge to reach the majority of peaks while

also being efficient. For this landscape, rapid learning appear to better balance

the growth in uncertainty against the reductions in uncertainty. Graphing the

viable technologies as a network reveals a more organic, branching structure

with some dead ends and with some technologies cloned multiple times (See435

Figure 3). The latter technologies are cloned very many times, although this

is probably a modelling artefact stemming from the way that technologies can

only be cloned if they have fewer than the maximum number of components.

The overall shape of these networks does not change as uncertainty rises or

learning slows, although the networks do grow more crowded, especially as the440

simulation hits the maximum number of components.

There was only one exception to the superior problem solving show by rapid

learning in a low K landscape. Slow learning combined with 80% initial un-

certainty narrowly edged out the equivalent case with rapid learning case by

satisfying .3 more peaks. However, this success was achieved by approaching445

rather than exactly reaching the satisfied peaks and also showed the least effi-

cient technology creation rates of all cases in the low K landscape. Both rates of

learning show that the most complete exploration coincides with the least effi-

cient technology creation, further supporting the null hypothesis. Interestingly,

both learning rates also show that the most complete exploration occurs at 80%450

initial uncertainty rather than at the lowest non-zero level or at the highest
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50% peak density, 1% valley density

Learning None Slow Rapid

Initial uncertainty 0 40 80 100 40 80 100

Tech agents 38.6 3432.7 4663.6 2050.4 1480.1 1455.2 1013.4

Tech agents/ peak 0.1 13.7 9.3 4.1 3.0 2.9 2.0

Peaks satisfied 37.9 497.1 495.9 492.4 448.3 498.1 496.2

Reached/approached 36.9/1.0 490.7/6.4 489.5/6.4 483.5/8.9 446.4/1.9 495.7/2.4 493.4/2.8

Tech agents/ 1.0 6.9 94.1 4.2 3.3 2.9 2.0

satisfied peak

50% peak density, 20% valley density

Tech agents created 2.7 931.7 2195.8 1790.8 138.6 737.8 659.7

Tech agents/ peak 0.0 1.9 4.4 3.6 0.3 1.5 1.3

Peaks satisfied 2.8 136.4 272 362.8 47.8 271.9 319.6

Reached/approached 1.8/1.0 118.5/17.9 240.4/31.6 317.0/45.8 41.6/6.2 238.7/33.2 278.4/41.2

Tech agents/ 1.0 6.8 8.1 4.9 2.9 2.7 2.1

satisfied peak

Table 3: Mean values for the two highest K landscapes with 500 peaks each and 10 or 200

valleys, respectively.

possible level, suggesting that there is a ‘sweet spot’ for how much initial uncer-

tainty is most useful for beginning an exploration of a low K landscape. This

sweet spot could be related to the balance between the growth of uncertainty

through mistakes and the reduction of uncertainty through learning.455

High K landscapes. The two hypotheses disagree about almost all of the ex-

pected behaviour in higher K landscapes, and so should prove more useful for

accepting or rejecting the hypotheses. Regrettably, the networks created by

graphing the technologies in these landscapes are so dense as to be totally im-

penetrable, so the results will only consist of a table full of the relevant metrics.460

Matching the results of the low K landscape, the experimental cases with 0%

initial uncertainty satisfied very few peaks but did so with very few superfluous
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agents. The results were particularly dire for the highest possible K landscape

with 200 valleys, where a mere 2.8 peaks were satisfied on average, further

supporting the null hypothesis.465

Also as with the low K landscape, more technologies are created and more

peaks satisfied as initial uncertainty rises for both learning rates. When there

are 500 peaks but only 10 valleys, rapid learning has the advantage by virtue of

satisfying slightly more peaks for most initial uncertainties. The cases with rapid

learning also created far fewer technologies than the cases with slow learning.470

This appears to give some support to the alternative hypothesis in that a rational

developer agent can solve problems both completely and efficiently.

Interestingly, for both rates of learning the most complete exploration of this

500 peak and 10 valley landscape did not coincide with the most efficient tech-

nology creation. Further, the case with the lowest non-zero initial uncertainty475

was the worst of the cases with rapid learning but the best of the cases with

slow learning. Although these results suggest that high K landscapes can be

explored completely and efficiently, the results do not show a clear correlation

between completeness and efficiency or between lower initial uncertainty, rate

of learning and better problem solving, nor do they show a clear sweet spot. It480

would seem that there are multiple ways to balance uncertainty growth through

making mistakes against uncertainty reduction through learning.

However, what stopped rational problem solvers from completely exploring

high K landscapes in previous models was not the number of peaks to explore

but the valleys that impeded their rational exploration. Thus, the real test485

is the highest possible K landscape, with 500 peaks and 200 valleys. In this

landscape, slow learning satisfied more peaks than the equivalent cases with

rapid learning. Both learning rates were more complete and more efficient in

the cases with 100% initial uncertainty, suggesting that the increased number of

valleys are better dealt with through greater uncertainty. Thus, the results from490

the highest possible K landscape support the null hypothesis by showing that

more uncertainty rather than less leads to better landscape exploration. How-

ever, these same results provide some support for the alternative hypothesis by
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25% peak density, 1% valley density

Learning None Slow Rapid

Initial uncertainty 0 40 80 100 40 80 100

Tech agents created 26.2 3401.7 4097.2 1711.9 1112.6 1046.6 752.7

Tech agents/ peak .1 13.6 16.4 6.8 4.5 4.2 3.0

Peaks satisfied 25.5 249.3 249 223.8 226 225.3 235.7

Reached/approached 24.4/1.0 243.0/6.3 240.1/8.9 214.6/9.2 223.8/2.2 223.1/2.2 231.3/4.4

Tech agents/ 1.1 13.7 16.5 7.6 4.9 9.1 3.2

satisfied peak

Table 4:

suggesting that some experimental parameters improve both completeness and

efficiency in very high K landscape exploration. These results also suggest that495

the balance between uncertainty growth and uncertainty reduction is influenced

by the presence of barriers to problem solving as well as by the presence of

additional problems to solve.

Mid-range landscape. Finally, the disagreements between the hypotheses cen-

tred around the expectations for high K landscapes, but they can be applied500

to mid-range and other non-low K landscapes as well. As with the other land-

scapes, the cases with zero initial uncertainty satisfied few peaks, but did so

efficiently, further supporting the null hypothesis. The cases with non-zero ini-

tial uncertainty are much more interesting.

As with the highest possible K landscape, the cases with rapid learning effi-505

ciently satisfied the majority of peaks, but the cases with slow learning satisfied

more peaks, albeit less efficiently. These results generally support the null hy-

pothesis, although the cases with the most complete exploration are sometimes

also the most efficient. Also mimicking the results of the highest K landscape,

slow learning was best paired with low initial uncertainty while rapid learning510

was best paired with high initial uncertainty. This further supports the idea

that the sweet spot, where uncertainty growth is balanced against uncertainty
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reduction, depends on the level of initial uncertainty, the learning rate, and the

features of the problem solving landscape.

4. Conclusions515

Most of the results seem to either contradict the expectations of the alter-

native hypothesis or confirm the expectations of the null hypothesis. First, the

very incomplete landscape exploration of the cases with zero initial uncertainty

suggests that at least some initial uncertainty is required for effective problem

solving in non-zero K landscapes. Complete certainty from the get-go prevents520

mistakes, but mistakes turn out to be beneficial. They lead to the discovery of

alternative problems, which allows uncertainty to grow, and also produce imper-

fect technologies that expand the possibilities for leapfrogging valleys. Even the

lowest K landscape was best explored by a surprisingly high 80% initial uncer-

tainty while some combinations of rapid learning and higher K landscapes saw525

the best results from 100% initial uncertainty. This suggests that a complete

exploration requires approaching certainty rather than starting with certainty.

Reducing uncertainty through learning kick starts a feedback loop by which

the learner becomes better placed to further reduce his uncertainty. On the

other hand, the initial uncertainty opens up the possibility for uncertainty to530

grow by discovering entirely new problems. This too starts a feedback loop,

with the added uncertainty increasing the likelihood of discovering new prob-

lem that add yet uncertainty. However, every growth in uncertainty entails at

least some reduction in uncertainty. Eventually, the uncertainty reduction over-

takes the uncertainty growth, strengthening one feedback loop while weakening535

the other. Thus, not only does a complete exploration require some initial un-

certainty, it also requires the capacity for uncertainty growth to temporarily

outstrip uncertainty reduction.

Second, adding the capacity to learn about ways to move across a fitness

landscape to the capacity to learn about that landscape did not resolve the540

conflict between the benefits of more knowledge, learning and rationality and
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the benefit of less knowledge, learning and rationality. Complete landscape ex-

ploration demands mistakes and uncertainty growth, which necessarily entail

inefficiency. Thus, no matter how much capacity for learning is added to a ra-

tional explorer, complex landscapes must still be explored either completely or545

efficiently. However, the trade off between completeness and efficiency is not

simple. Zero initial uncertainty produced both the least complete exploration

and the most efficient technology creation, but the cases with the most complete

exploration did not always coincide with the particularly inefficient technology

creation. Mistakes are not guaranteed to be useful in any way, so problem550

solvers that choose to prioritise exploratory, speculative landscape searches over

efficient ones should be aware that inefficiency does not guarantee problem solv-

ing completeness.

Third, slower learning was as complete or more complete at landscape ex-

ploration than rapid learning for almost all K landscapes and was especially555

superior when the landscape included many valleys as well as many peaks. Al-

though initially counter-intuitive, slow learning seems to provide a better bal-

ance between uncertainty growth and uncertainty reduction, particularly when

the problems to address can reasonably be expected to be complex and to con-

tain many barriers to progress. Rapid learning paired with high or total initial560

uncertainty produced nearly as good a balance between uncertainty growth and

uncertainty reduction, especially if efficiency is a priority. Thus, choosing an

appropriate approach to problem solving is not simply a matter of weighing

urgency against the perceived landscape, but should also consider how much is

already known.565

Unfortunately, it is not clear how to determine the complexity of a prob-

lem, how many barriers lie in the way of the solution, or how much is really

known about that problem before setting out to solve that problem, making the

insights gained through this model difficult to apply. Additionally, there are

many aspects of this model that could be changed and which might produce570

entirely different results. For example:
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Dynamic landscape The NK model implies that agents solve exogenous prob-

lems in a fixed solution space and in a static environment, but allowing

the landscape to shift or grow would mean that previously learnt infor-

mation would go out of date. This would allow the developer to continue575

making mistakes, potentially resolving the conflict between completeness

and efficiency.

Multiple, communicating developers Multiple problem solvers might be

able to work on different problems and to communicate their successes

and mistakes. This could reduce the chance that developer agent get per-580

manently stuck on one problem and could improve both problem solving

completeness and efficiency.

Generational turnover Mistakes reduced as learning moved the developer

toward total certainty, but new, mistake-prone developers could be intro-

duced to offset the removal of developers that have lost the ability to make585

mistakes. This could be especially useful in a dynamic landscape as gen-

erational turnover is key to the emergence of highly structured, consistent

and adaptive languages among simulated agents [15].

The proposed changes might show the conflict between completeness and

efficiency in a new light, but are don’t seem like to change the way individual590

learning gradually makes the learner more conservative and averse to making

risks. Further, these proposed changes appear to push learning and rational

behaviour away from the individual and back up to the abstract, population level

where it began with totally irrational and learning-free agents finding optimal

solutions by wandering randomly in a landscape under the influence of selection595

pressure.
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