1- Bounded Confidence Model with Rejection Mechanism
In this section we present the 2D BC opinion dynamics model (Huet, Deffuant, and Jager, 2008).  The model has been developed based on the Cognitive dissonance theory proposed by Festinger (1951). Cognitive dissonance is a psychological conflict that occurs when there is an inconsistency between two or more beliefs which one holds simultaneously. Cognitive Dissonance theory suggests that dissonance is “psychologically uncomfortable” and therefore motivates people to achieve a balanced state. That is, they avoid anything that increases the dissonance and thus change their beliefs in a way that reduces the perceived dissonance. For instance, one plausible way to reduce the dissonance is to shift away from those who possess opposing beliefs. To describe the formal model, let us consider a set of N individuals each having: 1) a 2-dimentional vector containing x1 and x2 representing real numbers ranging from -1 to +1, reflecting the opinion of node over two different issues, and 2) a 2-dimentional vector containing u1 and u2 representing by real numbers between 0 and 1 reflecting uncertainties related to x1 and x2 respectively.
At each simulation time step, instead of allowing each agent to interact with all of its neighbors, a pair of individuals is randomly selected to interact and update their opinions. Here they condition the updating process based on the values of opinions and uncertainties. Suppose that agent i has opinions x1i and x2i with uncertainties u1i and u2i, and agent j has beliefs x1j and x2j with uncertainties u1j and u2j. For sake of simplicity, the assumption is that all nodes have similar uncertainties. Also lets assume that  represents the first opinion of agent i at time step t and µ is a constriction factor used to limit the convergence velocity. The assumption is that µ is constant and equal for all agents throughout the simulation. Finally, let  represents the “intolerance threshold”, which is a conceptual threshold in determining the cognitive dissonance situation, and psign(.) be similar to sign function, except that it returns +1 if the argument is 0. Table 1 summarizes the model’s components and parameters.

Table 2: Huet et al’s (2008) Opinion Dynamics Model Updating Rules  
	Condition
	Updating Rule
	Mechanism
	Supporting Theory

	

	               (1)                    (2)
	Attraction
	Homophily

	


	                                                   (3)
               (4)
	Attraction
	Homophily &
Cognitive Dissonance

	


	                                                   (5) 
                                            (6)
	Rejection
	Social Judgment & Cognitive Dissonance

	

	                                                   (7)
                                                   (8)
	-
	Cognitive Dissonance


The entire updating rules are summarized in Table 2. Agent i compares its opinions with those of agent j’s and updates its opinions according to updating rules. The general rule is that agents approach each other if they are close enough in both opinions (equations 1 and 2 and 4). Otherwise, they may reject and shift away from one another if the opinion difference is significant enough to trigger the dissonance feeling (equation 6). The movement should be large enough to resolve the dissonance. Since the model has been built on the cognitive dissonance theory, it assumes that for cases in which two agents are far in both opinions, there is no dissonance between them and therefore there is no influence from one to another and they simply ignore each other on both opinions (equations 7 and 8). 
[bookmark: _GoBack]2- Activation Regimes
There are important differences between the manner social interactions work in real world and the way it is simulated by researchers. These disparities in some cases can be significant enough to cast doubt on the results of the computational models of social interactions (Huberman and Glance 1993). The inter-event time distribution of individuals’ activities is one of the influential parameters that needs to be addressed in computational models. In general, activation regimes are categorized to synchronous and asynchronous regimes. While synchronous activation regime assumes that all agents are simultaneously activated and updated at each time step of the simulation, in asynchronous activation regime there is no global clock that causes all agents to update their state at the same time (Huberman and Glance 1993). 
Asynchronous updating schedule could be based on geography in which the order of activation is determined according to agents’ spatial characteristics. One example could be that agent located at 12 o’clock activates first and the rest proceeds clockwise. The updating schedule could be state-dependent in which agents having a given state activate first. The activation regime might also depend on the incentives of agents. That is, those agents who benefit the most by activation precede the others (Page 1997). In general, any deterministic or biased activation regimes are plausible. But choosing the activation scheme that fits the best to the system under study remains a modeling challenge. In this following, we describe the four asynchronous updating schemes including uniform, random, and two Poisson activation regimes (Axtell 2001).
Uniform activation regime creates a sequence of pairs from the population through sampling without replacement. The pairs update their state when they were activated. One turn is defined as activating the entire population (in pairs) exactly once. To avoid spurious correlation between agents, it is crucial to periodically randomize the order of agent activation. That is, given the sequence in which agents are serially activated, some agents should be repositioned so that in the following time step most of the agents have at least one new neighbor. Uniform activation should be applied when activating all agents in a single turn is empirically or behaviorally reasonable (Axtell 2001).
Random activation involves selecting pairs of agents from the population with replacement. A turn is defined as complete when a full population has been activated, or after n/2 pairs have been selected. Assuming that the activation probability of all agents is equal, the distribution of the inter-activation times of the agents is binomial and called random activation (Axtell 2001).
In Poisson activation regime, each agent has its own clock which wakes it up when the agent is to be updated (Schönfisch and de Roos 1999, Axtell 2001). In this sense, the activation of each agent is independent of all other agents. If for every t > 0 the number of activations in the time interval [0, t] follows the Poisson distribution with mean λt, then the sequence of inter-arrival times (i.e. the waiting times of the clocks) are exponentially distributed with mean 1/λ. To determine the timing of activations, a random exponential number ti with parameter λi is assigned to each agent. The simulation starts with the smallest of these numbers. After getting updated, the agent calculates its next activation time according to  where  is the new assigned exponential random number with parameter . Then the model again looks for the smallest activation time and updates the corresponding agent. Note that the λi can be constant or dynamic over the simulation period.
Poisson activation regime requires the determination of the activation rate, λi, for each agent. Several ways are possible to determine the value of λi. In this paper, we introduce a state-driven approach in which the agents’ timing order depends on their opinions. More specifically, we consider two cases: 1) agents with extreme opinions are more likely to be activated (Poisson-1), and 2) agents with moderate opinions are more likely to be activated (Poisson-2). We choose to make λi proportional to the sum of the absolute values of agents’ opinions. Thus, for the former case, those having greater total opinion activate more frequently and those having less total opinion activate at a slower rate. For the latter case, agents having total opinion closer to zero have more activation probability and agents with total opinion closer to 2 have smaller chance of updating. These rates were normalized at the beginning of a turn so that, on average, one population of agents would be activated on each turn.
