А.	A.1. Purpose	Garbage Can agent-based model is designed and developed
Overview	_	to study process of collective decision-making.
		The concept of GCM is decision making, which resolve
		Problems. Problems have Energy Required (ER) for their desigion Managers (desigion makers) have Effective Energy
		(EE) for the decisions generation. The place of decision
		making is the Choice Opportunities (Choices) - abstraction of
		committees, consul boards and so on.
		The size of the model is determined by the number N. In the
		model there are N choices and managers and 2N problems.
		The modeling process takes 2N points in time.
		The Choices and Problems open randomly. The Problems
		activated by two items and Choices by one item per step of
		modeling (tick) in first half of modelling time. All Managers
		are ready for action from first modelling step.
		Problems and Managers access to Choices in according with
		system structure. There is three types of Problems access to
		Choices and three types of Managers access to Choices.
		Unsegmented access type is full access for all Problems
		(Managers) to all Choices.
		Hierarchical access type is access for first and second
		Problems (first Manager) to Choice number one, access for
		third and fourth Problems (second Manager) to Choices
		number one and number two and so on.
		Specialized access type is access for first and second
		Problems (first Manager) only to Choice number one, access third and fourth Broblems (accord Manager) only to Choice
		number two and so on
		The structure of the decision-making system determines the
		result of its work in the most essential way. The number of
		solved problems and the types of solutions worked out
		depends on it. See further Details section.
	A.2. Entities, state variables	
	Agents/individuals	Agents in the model are choices, problems and managers.
	Spatial units	Spatial units in the model are absent, in the sense that space
		(World) is used for visualizing the relations of objects.
		Localization of managers and problems in choices at each
		point in time is shown on the model's space with the help of
		symbols (laces, circles, persons and inscriptions, denoting
	Fnvironment	In the model there are no affecting (external) forces that drive
		the behavior and dynamics of all agents.
	Collectives	Collectives in the model are the groups of managers united at
		a one time moment in one choice. The principle of fluid
		participants determines the variable composition of such
		teams. The aim of the teams is to solve the problems present
		in this choice by combining (with the accumulation) of
		effective energy managers.
	A.3. Process overview and	One time step represents one moment decision-making
	seneduning	process.

		On each step of modelling Problems and Managers checks the accusable (in according with system structure) Choices for minimal level of (ER - EE), i.e. Choice nearest to decision, and migrate to it. Then, all opened Choices checks decision rule.
		If ER <= EE decision with type "Resolution" carried out, the
		Choice and attached to it Problems closed. If no one Problem
		attached to open Choice at the step of modelling, Choice will
		committee)
		If it was Problems in the Choice in past, but now Problems
		leave the Choice (migrates to other Choices). Choice closes.
		There is decision "Flight". EE of Managers, accumulated in
		the Choice, wasted.
		The main difference between Problems and
		Managers is: Problems transfers their ER from Choice to Choice in the process of migration, but Managers get their EE by quantums and leave EE in Choices in the process of migration.
		Model simulation of the decision-making system was
		carried out as follows:
		1. model time is discrete and is a sequence of 20
		periods (steps of simulation);
		2. is generated a flow of choices, i.e. random
		sequence of numbers from 1 to 10;
		5. Is generated a now problems, i.e. random sequence of pairs of numbers from 1 to 10 (in every
		moment of discrete time model are two problems) i.e.
		all problems will be generated in the first ten points of
		modeling time:
		4. at each time point all the managers and all
		activated problems selected according to the decision
		and access structures opportunity choice closest to the
		solution. Such a possibility is to choose the lowest
		energy difference between the ER and EE.
B. Design	B.1 Theoretical and Empirical	This model is based on the paper
concept	background	Cohen, M., March, J. & Olsen, J., 1972. A Garbage Can
	Basic principles.	Model of Organizational Choice. Administrative Science
		and author's reconstruction of the logic of the decision-
		making system, given in the works:
		1. Smarzhevskiy, I., 2014. Garbage Can Model:
		Reconstruction and Logical Analysis :
		http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2490388
		2. Smarznevskiy, I., 2014 Four Border Structures in GCM (Small Addition to the 'Garbage Can Model: Reconstruction
		and Logical Analysis'):
		http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2519433
		I he model developed by M. Cohen and J.March and I. Olsen ((Cohen et al. 1972)) is a simulation and describes
		the adoption of the set of decisions in an organization on the
		basis of event streams: the problems and choice opportunities.
		Applicability range of the garbage can model is very
		broad, since the declared characteristics of the organization

that is the subject of modeling, do not represent a severe limitation. In particular, the fluid participation means creating and disbanding in the organization of committees and commissions, at the meetings of that address, as is the practice of management. In addition, to paraphrase a classic, we can say that the organization remains, as people come and go, that is, purpose of decision-makers, changing with the phases of their career cycles, and by the very fact of membership. Specialization problems in the model is not specified, the flow problem is simply a set of numbers.

Algorithmic part of the model does not specify such a limitation, as the complexity of the technology. Flow problems comes in decision-making, in the content of the model is not present, and the only thing that can be understood in such a representation problems facing the organization, it is not the hassle, going beyond their operating activities. Consequently, this policy issues. But for many organizations, having the (declared) clear objectives, a characteristic way to react to changes in the environment is the strategic issues by forming a temporary organizational structures: committees, commissions etc..

A key element of the model is the choice opportunity, abstracting any organizational form of the interaction of decision makers. To solve the problems, a certain level of energy. The required energy problem abstracts a level of complexity, effective energy - competence of the manager and his energy in the truest sense of the word.

Access structure determines the availability of choices for problems: hierarchical, specialized or unsegmented. Access problems to the choices given by a matrix of the form (an example of the structure of small dimension)

1	1	1
1	1	1
1	1	1
1	1	1
1	1	1
1	1	1

where the columns correspond to the range of choice opportunities and lines - problems. This matrix defines a unsegmented structure in which any choice is available for any problem. The hierarchical structure is the matrix of the form

	1	0	0	
	1	0	0	
	1	1	0	
	1	1	0	
	1	1	1	
	1	1	1	
the	avail	abil	ity	of

which means that the availability of the first choice (first column), for all problems, and the second choice - to problems with numbers 3 to 6 and a third choice - for the 5th and 6th problems. In the original work of problems is twice the number of choices, i.e. one possibility to have access select at least two problems.

	Specialized access means access for one problem only one
	choice and is given by the matrix of the form
	1 0 0
	1 0 0
	0 1 0
	0 1 0
	0 0 1
	In this case, the first choice is available for the problems with the numbers 1 and 2, the second - for the 3rd and 4th problems
	and so on.
	Availability of choices for decision makers is determined by
	the type of organizational structure (decision structure):
	hierarchical, specialized or unsegmented. Matrix of the form
	1 1 1
	where the rows correspond to the range of choice
	opportunities and the columns - managers, defines a
	unsegmented access managers to the choice opportunities -
	each manager each manager is available any choice
	opportunity.
	Hierarchical access given by a matrix of the form $1 1 1$
	0 1 1
	that, in this example, is the availability of the first choice (top
	row) for all managers, the second choice - for the second and
	third of managers, and third choice for only the third manager.
	Specialized decision structure is the matrix of the form $1 0 0$
	0 1 0
	0 0 1
	In this case, each manager is available for only one choice.
	a choice opportunity is the key structural element (garbage can) forming a model that links the problem with managers
	That choice is a garbage can which lists the elements of flow
	problems that can connect to both problems and managers.
	Another important concept of the model is the effective
	energy (effective energy, EE), which has the organization as
	a whole, and in some way distributed among managers.
	Distribution is constant in time and has three options: equal distribution the distribution of "important people more
	energy" and the distribution of "important persons - less
	energy, "Important are those who have access, according to a
	given structure of the matrix, for more choices. Distribution
	of "important people - more energy" is as follows: 1 0.9 0.8
	0.7 0.6 0.5 0.4 0.3 0.2 0.1 units of energy. With a uniform
	distribution of each manager has 0.5 units of the effective
	energy at each step of the process to be simulated enterprise
	Solutions. The idea of the model is that the problems require energy for
	their decision and managers are a source of energy Problems
	carry the energy load specified by the variable Load. In the
	original paper considered three options to boot the system
	decision-making, in which the variable Load mattered 1.1 2.2
	3.3 respectively. To solve this problem requires energy in the

	amount specified variable Load. The idea of the model is that the problems require energy for their solutions (energy requirement, ER), and the managers are a source of energy.
	Net Energy Load value is the difference between the total energy managers (66 units) and the total energy required to resolve all twenty problems are gradually coming into the
	system. For three values of the variable Load, above, the values of Net Energy L and 66 - 22 - 44, 66 - 44 - 22 and 66 - 66 - 0. In
	the third case, the total energy managers enough to solve all the problems in the first two cases, there is some stock.
	However, the structure of the access problems to managers and key elements of the model - a choice - complicates the decision-making, even in the case of positive values of Net
	Energy Load with the result that not all the problems that come in the decision-making system are resolved.
	states: inactive - active - closed (resolved). Solutions are output model and the model produced at certain points of the
	discrete model of time. Part of the problem and choices, with a heavy load can remain active at the end of the process model. Thus, the decisions will be made not for all the choices
	and problems (all or part) remain unresolved. Managers, being quantitatively constant, represent the flow in terms of
	The fluid participation, stipulated as one of the hallmarks of organized anarchy, inherent in a simulated organization is
	manifested in the dynamics of relations managers with a choice. Decision in the literal sense of the word in the model is the
	"closing" active choice in which all attached to it (at the time of the decision) problems are also "resolved."
	If the problem at this time of simulation in this choice does not appear, choice just closes. This type of solution is called
	«Flight», the solution of this type occurs when a number of problems were linked to the choices in the past, effective energy management in this choice was not enough to make
	decision, and at the moment the problem migrated to another choice. Now remaining in the choice of energy efficient
	zero. It is obvious that in the solution of the type «Flight» no problems are not solved.
	Another type of solution is «Resolution». It is carried out in the case where at this time of the decision rule in the choice of the effective energy managers enough (greater than or
	equal) to solve the problems associated with this choice. The third type of solution is «Oversight». This decision is
	problem. Oversight solution does not solve the problem and implemented at minimal cost effective energy acceded to the
	choice of managers. This energy is wasted, as is spent on the zero solution of problems. The economic substance of such a solution is the discovery of a new committee for which is not
	relevant issues. Solution «Oversight» typical case of a specialized access and decision structures, since such a

	structure may be cases activation problems in later times, rather than activation available to them choices.
Emergence	The main result observed in the simulation is the behavior of managers pursuing problems moving through the choices
B 2 Individual decision making	The individual behavior of managers and problems consists
D.2. Individual decision making	in finding the choices that are closest to the colution that is
(Adaptation)	in finding the choices that are closest to the solution, that is,
	having the minimum difference between the required energy
	to solve problems and the effective energy accumulated in
	choice.
Objectives	Objective is quantity of problems resolved, types of making
	decisions, state of choices, amounts of effective energy spent
	on decision making (problem solving).
	They are measured quantitatively and are available to the
	survey in the Sheet "Log" of XLS file.
Learning	Individuals do not learn throw the simulation process.
B.6. Individual prediction	Individuals do not predict future condition
B 7 Stochasticity	Initial setting are sources of stochasticity in the model:
D . <i>i</i> . Stochusticity	1 is generated a flow of choices i.e. random sequence
	of numbers from 1 to 10 (steps of model time when
	choices will be activated):
	2 is generated a flow problems i.e. random sequence
	2. Is generated a new problems, i.e. random sequence
	when pair of problems will be activated) i.e. all
	when pair of problems will be activated), i.e. an
	problems will be generated in the first ten points of
	modeling time.
	Stochasticity in model is realized by random settings of
	sequence of ticks, when problems and choices will be opened.
B.8. Observation	Reports:
	Current (for each time moment) state of Choices (problems
	and managers affiliated with Choice, ER and ER in the
	Choice), quantity of problems resolved, state of choices,
	amounts of effective energy spent on decision making
	(problem solving) placed on Sheet LOG.
B.9. Implementation Details	The model is realized by means of Microsoft Office Excel
	2010. The code is implemented as a Visual Basic macro, input
	and output data (log with numerically designated garbage
	cans) are placed on Excel sheets. Open source and available
	on CoMSES (<u>https://www.comses.net</u>)
	If you mention this model or the NetLogo software in a
	publication, we ask that you include the citations below.
	For the model itself:
	Smarzhevskiy, I., 2014. Garbage Can Model:
	Reconstruction and Logical Analysis :
	http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2490388
	Smarzhevskiv, I., 2014 Four Border Structures in GCM
	(Small Addition to the 'Garbage Can Model: Reconstruction
	and Logical Analysis'):
	http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2519433
	Please cite the NetLogo software as:
	* Wilensky, U. (1999). NetLogo.
	http://ccl.northwestern.edu/netlogo/. Center for Connected
	Learning and Computer-Based Modeling, Northwestern
	University, Evanston, IL.

C. Details	C.I. Initialization	The initial data is located on the sheets of the XLS-file, the
		corresponding notes to the ranges of cells are given on the
		sheets.
		During the initialization process, data is entered for
		1. Defining the structure of access problems to choices (sheet
		"IK A")
		2 Defining the structure of access for managers to choices
		2. Defining the structure of access for managers to choices
		(Sheet JIA).
		3. Specify the order (number of tick) activation problems
		(sheet "RND").
		4. Defining the order (number of tick) of the activation of
		choices (sheet "RND").
		5. Generating effective energy distribution among managers
		(sheet "XEA").
	C.2. Input data	The model does not use input data to represent time-
	-	varving processes.
	C 3 Submodels	Submodels are logical parts of Visual Basic macro code in
		the XI S-file separated by comments
	DECLADATIONS	Here are the variable declarations. Data is contained in arrays
	DECLARATIONS	Here are the variable declarations. Data is contained in arrays,
		as the structures most suitable for this within the framework
		of Visual Basic. Most important variables are:
		IKA(20, 20) and $JIA(20, 20)$ contained the structure of
		problems access to the choices and managers access to
		the choices.
		XEA(20, 20) contained the effective energy distribution
		between managers throw the time moments (of
		between managers throw the time moments (or
		simulation). KDC (1) is number of Choice to which is
		attached 1-th manager.
		ICH(20) – numbers of Choices, ICS(20) status of Choices
		(inactive, open, closed), XERC(20) is Choice energy
		requirement (at the time moment), XEE(20) is Choice energy
		expended (at the time moment).
		JF(k) is number of Choice to which is attached k-th problem.
		XERP(k) is ER of k-th Problem.
	SET MODEL SIZE	Most important variables are:
		NTP = 20 'Time periods
		NCH = 10 'Num of Choise
		npr = 20 'Num of PRBLS
		ndm = 10 'Num of DMakers
	LOC CLEANINC	Clean sheet "I OC" for output
	DATA DEADING EDOM	Pand data to arrays
	EILE SUFETS	Read data to allays.
	SET ENERGY LOAD	Cut Variable Land which determines the ratio between the
	SET ENERGY LOAD	Set variable Load, which determines the ratio between the
		I total EK and the total EE, that is, the degree of system energy
		load. Quantitatively, the degree of loading is determined by
		the following values of the variable: 3 is full load (total ER is
		equal to total EE), 2 is total ER equal to 2/3 of total EE, 1 is
		total ER equal to $1/3$ of total EE.
		To change the system load level, you need to change the value
		of the variable directly in the model code.
		Activate Managers.
	PROBLEMS AND CHOICES	Time loop (time moments for simulation) starts hire, and
	ACTIVATION	control end of experiment after the time has expired
		Create problems and Choices in according with schedule
		in among in a the total and enough a second ling with schedule
		increasing the total energy required to solve them.

	FIND MOST ATTDACTIVE	Each active Ducklass and shales with min (ED EE)
	CHOICE EOD DDODI EMS	Each active Problem seek choice with min (ER - EE).
	CHOICE FOR PROBLEMS	The problem migrates to the selected choice.
	FIND MOST ATTRACTIVE	Each Manager seek choice with min (ER - EE). The
	CHOICE FOR MANAGERS	manager migrates to the selected choice.
	ESTABLISHING THE	Accumulate energy of problems attached to the i-th choice in
	ENERGY REQUIRED TO	XERC(i).
	MAKE EACH CHOICE	Accumulate energy of managers attached to the i-th choice in XEE(i).
	MAKING DECISION	Check all open choices and when the decision rule (ER
		$\langle EE \rangle$ is executed, closes such a choice and all problems
		attached to it.
	WRITE TO LOG	Write results to Sheet "LOG".
		And time loop (time moments for simulation) ends hire.
References		Cohen, M., March, J. & Olsen, J., 1972. A Garbage Can
		Model of
		Organizational Choice. Administrative Science Quarterly,
		Volume 17, pp. 1-25.
		The Garbage Can Model of Organizational Choice by Guido
		Fioretti, posted Jun 22, 2013 at openabm.org
		https://www.openabm.org/model/3840/version/1/view
		Garbage can model Excel reconstruction by Ivan
		Smarzhevskiy, posted Aug 19, 2014 at openabm.org
		https://www.openabm.org/model/4310/version/3/view
		Fioretti, G. & Lomi, A., 2008. An Agent-Based
		Representation of the Garbage Can Model of Organizational
		Choice. Journal of Artificial Societies and Social Simulation
		http://jasss.soc.surrey.ac.uk/11/1/1.html
		Fioretti, G. & Lomi, A., 2010. Passing the Buck in the
		Garbage Can Model of Organizational Choice. G.
		Fioretti and A. Lomi: Passing the Buck in tComputational
		and Mathematical Organization Theory, Issue 16
		(2), pp. 113-143.
		Smarzhevskiy, I., 2014. Garbage Can Model:
		Reconstruction and Logical Analysis :
		http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2490388
		Smarzhevskiy, I., 2014 Four Border Structures in GCM
		(Small Addition to the 'Garbage Can Model: Reconstruction
		and Logical Analysis'):
		http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2519433