In-Group Favoritism due to Friend Selection Strategies based on Fixed Tag and Within-Group Reputation -Algorithm pseudo code and parameter details

Parameters
G = Number of generations. Ex. G = 500, or 30000.
The number of generations to run the simulation for.

N = Population size. Ex. N = 20, 50, or 100.
b = Benefit of giving. Ex. b = 2, 6, or 10.
c = Cost of giving = 1.
If player i cooperates with j, i pays a cost c and j gets a benefit b (b> c). If i does not cooperate with j, both get and pay nothing. We set c at 1.0 without loss of generality.

g = Group size of blue group. Ex. g = 0.5, 0.6, 0.7, or 0.8.
The ratio is defined as blue group’s population over total population (N).

m = Matching ratio. Ex. m = 0.1, 0.5, or 1.0.
We define the matching ratio (m) as the total encounter number divided by N×(N – 1). Each player can encounter total m×(N– 1) other players in one game on average. For example, the m = 1.0 corresponds to a round robin game.

h = Homophily. Ex. h = random matching or 0.9.
Homophily means that players encounter others with the same tag more frequently with a probability h.

s = Selection ratio. Ex. s = 0.1
Players with lower payoffs (s of the total population N) abandon their strategies and adopt the strategy of the player with the highest payoff.

μ = Mutation rate. Ex. μ= 0.01
A few players are assigned at random by the mutation rate (μ) to abandon their strategies and adopt strategies selected randomly.

Agent (or group) state variable:
Ti = Tag of player i. T∈{blue, red}.
The tag is invariable. Every player belongs to blue or red group. Friend selection strategies are made of tags in combination with within-group reputation.

RiB or R = Player i’s reputation in a blue or red group (within-group reputation)
A player’s reputation in a group is made based on how to cooperative or non-cooperative hi/she was to the group. The player has two kinds of reputations: one in blue group and the other in a red group.

STi= Strategy of player i. ST∈{CC(ALL_C), CT, CI, CD, TC, TT, TI, TD IC, IT, II, ID DC, DT, DI, or DD(ALL_D)}.
Friend selection strategies are made in combination with a tag and a within-group reputation. Each player has a strategy and updates his/her friend list based on the strategy.

MMij = Matching Matrix: 1 if player i encounters j or 0 if not.
Whom player i encounters. Each player encounters other players at random. There are total m×N×(N – 1) encounters in a society, that is, each player can encounter total m×(N – 1) other players in one game on average. If no encounter, no giving game.

FLij = Friend List: 1 if player i sees j as a friend, or 0 if as an enemy.
Who player i sees as a friend. Each player decides who are his/her friend or enemy based on his/her strategy. Even if player j is player i’s friend, player i is not necessarily player j’s friend. The list continues to be updated through one trial of a simulation.

Main Outline Algorithm:
Initialization // see function below
Loop for G generations
 Perception () // see function below
Matching () // see function below
 Giving Game () // see function below
 Selection () // see function below
 Mutation () // see function below
End Loop

// Initialization
Function Initialization ()
Create N players
g×N players belong to blue group. // The blue group’s population is g×N
Set the players’ tags to blue or red (T* = blue or red).
Loop for each player i
Set i’s strategy to a FSS-TR (STi = CC(ALL_C), CT, CI, CD, TC, TT, TI, TD IC, IT, II, ID DC, DT, DI, or DD(ALL_D)).
End Loop
Loop for each player i
Set bits in i’s friend list at 0 or 1 at random (FLij = 0 or 1).
End Loop
End Function

// Perception
Function Perception ()
Loop for each group G // blue or red
 Loop for each player j
 Loop for each player k of the group
 If j cooperated with k in the last generation, then
 j’s reputation in group G is increased by +1 (RjB or R = RjB or R + 1).
 End if
 If j didn’t cooperated with k in the last generation, then
 j’s reputation in group G is decreased by +1 (RjB or R = RjB or R − 1).
 End if
If j didn’t encounter k in the last generation, then
nothing changes (RjB or R = RjB or R).
 End if
 End Loop
 End Loop
End Loop // player’s reputation both in a blue group and in a red group (within-group reputation)

// How for a TD strategy to update his/her friend list. As an example, i’s strategy is TD (STi =TD). The codes of other strategies are similar.
Loop for each player i
 Loop for each player j
 If i encountered j in the last generation (MMij = 1), then
If i and j belong to the same group (Ti = Tj), then
If j’s reputation in i’s group is good (RjB or R > 0), then
 i sees j as i’s friend (FLij = 1).
 End if
 If j’s reputation in i’s group is bad (RjB or R < 0), then
 i sees j as i’s enemy (FLij = 0).
 End if
If j’s reputation in i’s group is neutral (RjB or R = 0), then
 j’s evaluation by i dosen’t change (FLij = FLij in the last generation)
 End if
 End if // within-group reciprocity
If i and j belong to the different group (Ti≠Tj), then
 i sees j as i’s enemy (FLij = 0).
 End if // intergroup hostility
 If i didn’t encountered j in the last generation (MMij = 0), then
 j’s evaluation by i dosen’t change (FLij = FLij in the last generation).
 End if
 End Loop
End Loop
End Function

// Matching
Function Matching ()
Loop for m×N×(N – 1) encounters // each player encounter total m×(N – 1) players on average
 If no homophily is assumed, then
 Select player i as an actor randomly.
 Select player j as an acted-upon randomly.
 End if
 If homohpily is assumed, then
 Select player i as an actor randomly.
 Select player j as an acted-upon in i’s group with probability h.
 End if
 The corresponding element of Matching Matrix is increased by 1 (MMij = MMij + 1).
End Loop
End Function

// Giving Game
Function Giving Game ()
Set payoffs of all players to 0 (P* = 0)
Loop for each player i
 Loop for each player j
 If I encounters J (MMij = 1) and j is i’s friend (FLij = 1), then
 i’s Payoff is decreased by cost c (Pi = Pi − c). // i cooperated with j
 j‘s Payoff is increased by benefit b (Pj = Pj + b).
 End if
 If i encounters j (MMij = 1) and j is i’s enemy (FLij = 0), then
 Both payoffs don’t change (Pi = Pi, Pj = Pj).
 End if
 If i doesn’t encounters j (MMij = 0), then
 Both payoffs don’t change (Pi = Pi, Pj = Pj).
 End if
 End Loop
End Loop
End Function

// Selection
Function Selection ()
Loop for each player i
 If i is an player in bottom s% of the population N in payoff, then
 Set i’s strategy to the strategy of player x with the highest payoff (STi = STx).
 End if
End Loop
End Function

// Mutation
Function Mutation ()
Select players with probability μ.
Mutate the players’ strategy of the strategy randomly selected.
End Function

#Note:
To generate random number, we used Mersenne twister’s algorithm.

