
1. Overview 

1.1. Purpose 

The overall purpose of this model is to explore how feedbacks between housing and land markets 

influence the conversion of undeveloped land (e.g., agriculture) to residential housing. The agent-based 

model (ABM) presented here is a version of the CHALMS model (Magliocca et al., 2011, 2012) that has 

been adapted to a coastal landscape subject to uncertain impacts from coastal storms (C-CHALMS). The 

goal of the model is not to simulate the development patterns and market dynamics of any particular 

location. Rather, the aim is to isolate psychological and perceptual factors that influence location and 

adaptation decisions and their effects on key interactions between housing and land markets (particularly 

the timing and proximity to the coast of land conversion. The model investigates how agent-level 

decisions and interactions through markets link to market- and landscape-level outcomes, such as housing 

and land prices and extent and configuration of residential development, respectively. Further, the goal is 

to understand how residential housing consumers make trade-offs between amenities and risks of 

damages from storms given location near the coast, and how those trade-offs do or do not influence 

adaptive decisions in response to storms, such as purchasing insurance and/or relocating to less risky 

areas. 

1.2. Entities, state variables, and scales 

Entities represented in the model include three types of agents (Table 1) and spatially-explicit land parcels 

of one acre in size (Table 2). 

1.2.1. Agents 

Three agents are represented: residential housing consumers (or simply ‘consumers’ from here on), 

landowners, and a representative housing developer. Consumers are heterogeneous in incomes and 

preferences for location and coastal amenity level. Consumers form individual, dynamic expectations of 

the annual probability of coastal storm occurrences (i.e., subjective risk perception), which are used to 

estimate associated expected damages for each available house given proximity to the coast. Based on 

these risk perceptions, new consumers make location decisions, and existing residents decide whether to 

relocate or purchase insurance in response to storm events. Each time step consumers observe all 

available houses and calculate their utility (see Objective Function) for all available housing given current 

housing asking prices, housing locations, and perceived risk of storm damages. Consumers also observe 

how many other consumers are bidding on the same houses on which they bid and adjust their bid to be 

more competitive (see Interactions).  

Landowners decide each time step whether it is more profitable to sell their land holdings to a developer 

or continue to maintain ownership and the current land use. At the initialization of each simulation, all 

landowners are assumed to know the potential surplus above their reservation price that would be gained 

by selling their land given their proximity to the coast. As dynamic simulation commences, landowners 

update land prices expectations. Landowners form dynamic expectations of future land prices based on 

interactions with the developer and observations of past land transactions elsewhere on the landscape.  

A single representative developer purchases land from landowners, building in locations that maximize 

expected profit, and sets the asking prices or newly constructed and/or vacated houses to sell to 

consumers. The developer observes the competitive bidding process among consumers for the existing 

housing stock, and forms expectations of future prices based on observed prices. The developer then 

extrapolates price expectations to all undeveloped locations on the landscape. Developer demand for land 



is then calculated as the difference between expected future population growth and the combination of 

currently vacant houses and owned but undeveloped land. If demand exceeds currently available housing, 

bid prices for land are formed for each undeveloped land parcel based on these price expectations net of 

construction costs. If a transaction is possible (see Submodels), the developer acquires land and 

recalculates expected profits for each housing type given the transaction price(s) for land. New housing is 

constructed and placed on the market the same year as the land purchase. This assumption simplifies the 

construction process, which can include an extended construction period from many possible and 

uncertain sources (e.g., weather, policy change). Using the price expectations formed before housing 

construction, the developer sets asking prices for available houses.  

Table 1: Attribute of consumer, landowner, and developer agents. 

Agent Type Attribute Description 

Residential 

housing 

consumer 

Income 

Annual household income spent between housing and all other 

goods (i.e., ‘consumer good’). Incomes are heterogeneous 

among agents and drawn randomly from a log-normal 

distribution with μ=$86,450 and σ=$39,095 and a range of 

[40,000, 200,000]. 

Share of income 

spent on housing 

Proportion of income spent on housing in Cobb-Douglas utility 

function. This proportion varies based on income level: $40-

$80k is .35–.42; $80-$120k is .27–.34; and > $120k is .18–.26 

(see Objectives). 

Coastal amenity 

preference 

Proportion of income spent on housing allocated proximity to 

coastal amenity with a range of [0.1,0.9].  Must sum to one in 

combination with house and lot size preferences. 

Subjective risk 

perception 

Dynamically updated based on direct experience (or lack 

thereof) of storm events. 

Moving costs Set to 10% of the consumer’s annual income. 

Landowner 

Land holdings 

The spatial location and total size of the land parcels owned by a 

landowner agent. Each landowner is assigned 100 acres each 

(10-by-10 cells). 

Reservation land 

price 

The economic returns generated from the land parcels in the 

highest value, undeveloped state. Along the coast, this is equal 

to the speculative value of the land for development. Further 

inland, this may be equal to returns from agriculture. 

Willingness to 

accept (WTA) 

for land 

Minimum price per acre that the landowner would be willing to 

sell to a developer. As development pressure increases, WTA 

and exceed the reservation price. 

Land price 

expectation 

models 

Set of twenty price prediction models with five different 

prediction strategies. Predictions of price in t+1 are based on 

past observations (see Agent Prediction). 

Residential 

developer 

Land holdings 
Spatial locations and number of land parcels purchased from 

landowners for development. 

Housing price 

expectation 

models 

Similar to landowners, the developer is assigned a set of twenty 

price prediction models with six different prediction strategies. 

Spatially explicit predictions of prices for each house and lot 

size combination in t+1 are based on past observations (see 

Agent Prediction). 

Profit target Equal to normal rate of return on investment, assumed to be 5%. 



 

1.2.2. Environment 

The model landscape includes a central business district (CBD) with existing residential development at 

the start of the simulation periods, and a large area of undeveloped land that is gradually developed as 

population grows. The landscape is highly stylized and does not represent an actual region, but it is 

parameterized using information on agricultural values, incomes, house prices, and other information 

from the Mid-Atlantic region of the U.S. The coast is assumed to be the eastern most edge of the 

simulated landscape. Coastal amenity values and potential damages from storms vary with distance from 

the coast (Figure 1). The landscape is divided into ‘damage classes’ based on proximity to the coast 

(Figure 2): ‘high damage’ locations are immediately adjacent to the coast (i.e., waterfront); ‘medium 

damage’ locations are within 0.4 miles (10 cells) of the coast but are not on the coast (i.e., ‘water view’); 

and ‘low damage’ locations are all other houses on the landscape (i.e., inland). High damage class areas 

are assumed to be at base flood elevation (BFE), and medium and low damage areas are assumed to be at 

2 or more feet above BFE. These classifications are assumed to align with those reported in Walls and 

Chu (in prep) and differences in insurance premiums described by Kousky et al. (2016). 

The annual probability of storm occurrence is based on historical averages reported by Costanza et al. 

(2008). Storms are randomly generated. A random number between 0 and 1 is selected each time step, 

and if that number is less than the historical annual probability a storm is simulated. The severity of 

storms is not considered here, so the annual probability of storm occurrence is the aggregate of historical 

probabilities of storms of any severity. Expected damages from a storm event, expressed as percent 

annualized property value loss, are estimated with an empirically-based, spatially-explicit damage 

function that decays with distance from the coast (see Implementation Details). Storm costs, C, as percent 

of property value and as a function of distance from coast, d (in 1000s of feet), are estimated as: 

(1)    𝐶 = 9.19 − 0.205𝑑 + 0.001𝑑2 

The value of the coastal amenity, a, is specified with an exponentially declining function with distance 

from the coast:  

(2)    𝑎 = 𝐴0
−𝑟𝑑; 

where r is the rate of decline, d is distance from the coast, and A0 is a maximum amenity value at the 

coast. The general shape of the amenity function is based on the hedonic property value literature that has 

assessed the value of ocean views and proximity (e.g., Benson et al., 1998; Bin et al., 2008; 

Gopalakrishnan et al., 2011; Major and Lusht, 2004). This literature generally finds that the capitalization 

of the coastal amenity in house prices falls of steeply with distance to the coast. The parameterization of 

this amenity function sets the amenity level at the coast to double the value of 0.4 miles inland. 

Table 2: Attributes of the landscape that vary by location. 

Attribute Description 

Area Each land parcel (i.e., grid cell) represents one acre. 

Proximity to the 

central business 

district (CBD) 

Spatial location relative to the centroid of the CBD, measured in 

miles. 

Willingness to pay 

(WTP) for land 

Maximum price per acre the developer is willing to pay for a 

landowners holdings based on expected profit. 



Travel cost 

Annual cost of transportation to and from house location and 

CBD at a rate of $25. 85 per cell ($1.30/mile, 0.0395 miles per 

cell, and 500 miles traveled per year; Magliocca et al., 2011). 

Proximity to the 

coastline 

Spatial location relative to the coast, measured in miles. 

Coastal amenity 

level 

Unit-free amenity level that decays with distance from the coast 

(Eq. 2). For baseline settings, the amenity level at the coast (Ao) 

is 500,000, and the rate of amenity decline with distance from 

the coast (r) is 0.08. 

Housing price 

neighborhood 

Contiguous developed land parcels from which the developer 

perceives housing prices for each housing type to inform future 

price expectations. 

Housing size 
Square footage of house built on one land parcels (all houses are 

2,000 ft2). 

Lot size All lot sizes are 1 acre. 

Population growth 

The number of potential consumers grows by 10% of residents 

each year. In other words, the number of located consumers (i.e., 

residents) may grow by more or less in a given year, but the 

number of consumers added to the pool of consumers bidding on 

housing grows by 10% of the resident population annually. 

Annual storm 

probability 

Based on historical averages reported by Costanza et al. (2008). 

Severity is not considered for simplicity, so the annual storm 

probability is the cumulative probability of a storm of any 

severity occurring. Four storm climates are implemented: Mid-

Atlantic region (p=0.025; Maryland, Virginia, Delaware, 

New Jersey, and Pennsylvania), North Carolina (p=0.299), 

Texas (p=0.383), and Florida (p=0.714) 

Storm damage 

classification 

Categorization of locations based on potential damages from 

storms. Classifications are waterfront (immediately adjacent to 

coast), waterview (within 0.2 miles from coast), and inland. 

Expected storm 

damages 

Percent of annualized property value loss incurred by the 

resident if a storm should occur based on simulate flood depths 

from the Hazus-MH model based on a 100-year storm. Expected 

damages decay with increasing distance from the coast (Eq. 1). 

Insurance 

coverage and 

premiums 

Insurance coverage is assumed to be the minimum of $250,000 

of building coverage or the housing price. Premiums are vary 

continuously over space based on distance to the coast. 

Waterfront properties and the inland-most cell (western edge) 

assume the maximum and minimum premiums for 100-yr 

floodplain properties as reported by Kousky et al. (2016). 

Premiums in between decrease linearly with distance from the 

coast at a constant rate. 

 

1.2.3. Spatial and Temporal Scales 

The landscape is modeled at a 1-acre resolution, and the full landscape covers 6,400 acres (80 acres 

square, or 10 square miles). In each period, land use and pricing decisions are made for each 1-acre cell. 

Simulation is executed for a total of thirty time steps – each time step representing a year – with the first 

ten time steps as model spin-up with a static landscape and the following twenty as dynamic simulation. 



1.3. Process overview and scheduling 

The following provides a simplified version of the process overview and scheduling. For more detail 

regarding each process or agent attribute involved (italics), please see the submodels section below. At 

initialization, agent attributes are assigned and landscape configuration set. The CBD is initialized with a 

mix of housing options and prices set through an iterative spin-up of the housing market (see 

Initialization). After initialization, the following sequence of processes repeat every time step. 

 Storm occurrence: A random draw determines whether a storm occurs in the given period (see 

Environment).  

 Update risk perception: Existing residents update perceived annual risk of storm events given 

the occurrence (or not) of a storm in the current time step (see Dynamic Subjective Risk 

Perception). 

 Adaptive resident decisions: Currently located consumers (i.e., residents) re-evaluate the utility 

of their current house given updated perceived storm probability, expected damages given the 

location, choice to purchase insurance (or not), and alternative utilities from moving to another 

available house in the region or outside of the modeled region. Existing consumers that have not 

located and new incoming consumers account for update risk perception in location choices (see 

Adaptive Responses). 

 Spatially explicit rent expectations: The developer observes transaction prices and demand for 

each housing type and location and for expectations for future rents accounting for expected 

population growth. Rent expectations are extrapolated to all undeveloped locations in the 

landscape (see section 2.2.1.2 and Submodels). 

 Land demand: The developer observes the number of vacant housing and undeveloped but 

developer-owned land, and compares the sum of those two quantities to expected population 

growth in the next period. If more growth is expected than current housing capacity, then the 

develop proceeds to the land market. 

 Land sales: Based on spatially-explicit rent expectations, the developer forms per acre bids prices 

for all undeveloped land based on the average expected profit across all housing types. 

Landowners observe developer bids and sell land if bid is above their willingness to accept price. 

The developer purchases the entire land holdings of the landowner. 

 Land price expectations: Landowners update their land price expectations based on most recent 

offers from the developer and any transactions that occurred in previous periods.  

 New housing: Based on transaction prices for land, the developer recalculates expected profits 

based on rent expectations and builds the profit-maximizing mix of housing on all or some of 

owned and undeveloped land. The number of houses built depends on expected population 

growth. 

 Housing sales: Consumers calculate utility for every available housing option given asking 

prices, house and lot characteristics, and location. Consumers observe the number of other 

consumers competing for the same houses and adjust bid prices. The highest bidder for each 

house occupies the house. Newly located consumers also choose whether or not to purchase 

insurance against storm damages given their perception of risk. 

2. Design concepts 

2.1. Theoretical and empirical background 

CHALMS synthesizes the advances from many ABMs into one framework capable of simulating 

development density patterns through coupled housing and land markets. Similar to Robinson and Brown 



(2009), housing and land markets are linked through the supply and demand functions of the developer 

and consumer households, respectively; however, our agents respond directly to and create market prices 

subject to economic constraints. Mechanisms of land and housing transactions in CHALMS are built 

upon the bilateral transaction framework developed by Parker and Filatova (2008), but are expanded to 

link the developer’s rent expectations in the housing market to his bid prices in the land market. Price 

expectations play a similar role in CHALMS as they do in Ettema’s model (2010). Adaptive expectations 

of future prices and market conditions are used to compare the utility of present and potential future 

transactions – directly influencing the timing of transactions. In addition, our agents’ price expectation 

models are designed to capture spatially dependent price trends that directly affect the location of housing 

and land sales. 

Substantial empirical evidence suggests that individual risk perceptions are biased, or subjective (Ludy 

and Kondolf, 2012), and risk perceptions change over time as new risk information is presented through 

either direct experience of hazards or indirect information channels (e.g., social networks, management 

agencies, insurance companies) (Dillon and Tinsley, 2008; Dillon et al., 2011). Thus, subjective risk 

perception may diverge from the objective probability of a hazard event in response to the number and 

frequency of events over time. In particular, risk perception may undergo large and immediate changes 

after a hazard event (Gallagher, 2014). A common Bayesian learning model (Viscusi, 1991) provides a 

formalization of dynamic, subjective risk perception in which individual housing consumer agents 

observe the occurrence of a storm event and update their expected probability of future storms (Davis, 

2004; DeGroot, 1970). Additionally, empirical evidence demonstrates that not only does risk perception 

diverge from objective levels over time, but also the rate at which it diverges varies in relation to time 

since a hazard event. Risk perception dynamics are attributed to homeowners either forgetting past events 

or not experiencing the full hazard history for a given location (Gallagher, 2014). This is modeled by 

modifying the Bayesian updating model with a weighting parameter that discounts past information 

(Camerer and Ho 1999; Malmendier and Nagel 2011).  

A myriad of risk-based, economic decision theories have been proposed that incorporate concepts, such as 

loss aversion, probability weighting, and intra- and inter-personal influences, to explain decision patterns 

that diverge from predictions of expected utility maximization. Foremost among these is Prospect Theory 

(Kahneman and Tversky, 1979), which posits loss aversion results from an over-valuing of potential 

losses versus equal potential gains relative to a given reference point. This is often implemented by 

‘probability weighting’, which over-weights low probability, high impact outcomes (e.g., Barseghyan et 

al., 2014; Kőszegi and Rabin, 2007; Sydnor, 2010). However, PT is limited in two important ways in the 

context of valuing alternative behavioral options under risk: 1) the reference point may be arbitrary and/or 

is difficult to estimate empirically (Barberis, 2013), and 2) it cannot explain observed risk-seeking 

behavior in situations of perceived high payoffs (Bordalo et al., 2012). For these reasons, we adopt 

Salience Theory presented by Bordalo et al. (2012), which formalizes probability weights as a function of 

payoffs. Rather than specifying outcomes relative to a reference point, each outcome is valued based on 

the relative salience of its payoffs (i.e., magnitude of change relative to one another), and perceived 

probabilities of each outcome are thus increased (decreased) for more (less) salient outcomes. This is 

consistent with the structural assumptions of many PT scholars that specify reference points based on 

expectations of future outcomes rather than stationary or internal value (Barseghyan et al., 2014). 

Salience Theory goes a step further to eliminate the need for a reference point and is instead based on the 

valuation of expected payoffs for each potential outcome, which has been demonstrated to predict 

situations of risk-seeking behavior in laboratory experiments (Bordalo et al., 2012). The ability to capture 

risk-seeking behavior is particular appealing in the context of the work presented here in which residential 



location decisions in close proximity to the coast can be interpreted as pursing the large payoffs of high 

coastal amenity values despite a risk of significant damages in the event of coastal storms. 

2.2. Agent decision-making 

2.2.1. Objective functions 

The model is designed to accommodate two alternative consumer valuation methods for making location 

and adaptation decisions: utility maximization and salience value. Formalizations of each are presented in 

the next sections. 

2.2.1.1. Residential housing consumer utility maximization 

Residential housing consumers competitively bid with other consumers to maximize utility from housing 

given asking price, personal budget constraints, location, perceive risk of storm damage, and competition 

from other consumers. A consumer c calculates standard Cobb–Douglas utility derived from the 

consumption of a general consumption good and a housing good. Each housing good can be considered a 

‘bundle’ of locational features and their associated utility (Table 2). Consumer c’s utility function has a 

Cobb–Douglas form: 

(3)    𝑈(𝑐, 𝑖) = 𝑥𝛼𝑐𝑎(𝑑𝑖)
𝛽𝑐  

where 𝛼𝑐 and 𝛽𝑐 sum to one and are the consumer’s idiosyncratic preferences for a consumer good (x) 

and amenity level (a) with distance (d) from the coast in location i, respectively. A consumer’s budget 

constraint is given by: 

(4)    𝐼𝑐 = 𝑥 + 𝑃𝑎𝑠𝑘|𝑖[1 + 𝜌(𝐶(𝑑𝑖) − 𝐼𝑃𝑑𝑖
𝑐𝑜𝑣)] + 𝜓𝑖 + 𝐼𝑃𝑑𝑖

𝑐𝑜𝑠𝑡 

Ic is income, 𝜓𝑖 is the travel cost from the location i to the CBD, ρ is subjective risk perception of the 

occurrence of a storm (see Dynamic Subjective Risk Perception), C is the expected damage from a storm 

in location i, and IPcov and IPcost are the amount of coverage and cost of an insurance premium, 

respectively, in location i with distance from the coast d. If the consumer chooses not to purchase 

insurance, the IP terms are equal to zero. The willingness to pay (WTP) of a consumer for any given 

house is equal to the proportion of the consumer’s income that goes towards housing: 

(5)    𝑊𝑇𝑃(𝑐, 𝑖) = (𝐼𝑐 − 𝜓𝑖 − 𝐼𝑃𝑑𝑖
𝑐𝑜𝑠𝑡)( 

𝛽𝑐

1−𝜌(𝐶(𝑑𝑖)−𝐼𝑃𝑑𝑖
𝑐𝑜𝑣)
) 

The WTP represents the ceiling price a consumer would pay for the optimum (i.e., utility-maximizing) 

housing option. WTP is further discounted for each available house relative to the optimum housing 

option for form a bid price (see Submodels). 

Resident consumer agents can respond to storm events by either doing nothing (i.e., no change), purchase 

insurance against future storm damage costs, or relocate to another available house within the region or 

outside of the region (i.e., removed from simulation). Relocation decisions within the region consider all 

available houses, and assessment of relocation to a house outside of the region is calculated utility based 

on an asking price for a house with zero coastal amenity. See Adaptive Responses for more detail. 

2.2.1.2. Residential housing consumer salience-based valuation 

Decision-making under risk is typically characterized by some type of bias, such as loss aversion, which 

results in decision outcomes that may different than if the decision-maker had full information about 

risks. Loss aversion is often formalized as an over-valuing of potential losses versus equal potential gains 



relative to a given reference point – implemented by ‘probability weighting’ – which over-weights low 

probability, high impact outcomes (e.g., Barseghyan et al., 2014; Kőszegi and Rabin, 2007; Sydnor, 

2010).  

Salience Theory (ST; Bordalo et al., 2012) formalizes probability weights as a function of payoffs. Rather 

than specifying outcomes relative to a reference point, each outcome is valued based on the relative 

salience of its payoffs (i.e., magnitude of change relative to one another), and perceived probabilities of 

each outcome are thus increased (decreased) for more (less) salient outcomes.  

ST frames decisions under risk as a choice problem between payoffs from two or more ‘lotteries’. In this 

context, lotteries are analogous to different behavioral options for each current or potential residential 

location. Specifically, a new housing consumer agent will choose between locating in a particular location 

with or without insurance given their expected probability of storm damages. This is formalized as a set 

of possible states (S) where each state 𝑠 ∈ 𝑆 occurs with a probability 𝜋𝑠 and has payoffs of 𝑥𝑠
𝑗
 for the 

behavioral options Lj. With these dimensions of the choice problem, a salience function is calculated as: 

(6)    𝑣(𝑥𝑠
𝑗
, 𝑥𝑠
−𝑗
) =

|𝑥𝑠
𝑗
−𝑥𝑠

−𝑗
|

|𝑥𝑠
𝑗
|+|𝑥𝑠

−𝑗
|+𝜃

 

where θ=1. The salience of a state for Lj increases in the distance between its payoff (𝑥𝑠
𝑗
) and the payoff 

𝑥𝑠
−𝑗

 of the alternative lottery.  

In this case, j=1,2 corresponding to locating in a location i without or with insurance with s=1,2 

corresponding to no storm event and the occurrence of a storm event, respectively. Payoffs from these 

outcomes are enumerated as follows: 

(7)    𝑥1
1 = (𝐼𝑐 − 𝜓𝑖 − 𝑃𝑎𝑠𝑘|𝑖)

𝛼𝑐
𝑎(𝑑𝑖)

𝛽𝑐 

(8)    𝑥2
1 = (𝐼𝑐 − 𝜓𝑖 − 𝑃𝑎𝑠𝑘|𝑖 − 𝐼𝑃𝑑𝑖

𝑐𝑜𝑠𝑡)
𝛼𝑐𝑎(𝑑𝑖)

𝛽𝑐 

(9)    𝑥1
2 = (𝐼𝑐 − 𝜓𝑖 − 𝑃𝑎𝑠𝑘|𝑖 − 𝐶(𝑑𝑖))

𝛼𝑐
𝑎(𝑑𝑖)

𝛽𝑐  

(10)    𝑥2
2 = (𝐼𝑐 − 𝜓𝑖 − 𝑃𝑎𝑠𝑘|𝑖 − 𝐼𝑃𝑑𝑖

𝑐𝑜𝑠𝑡 − (𝐶(𝑑𝑖) − 𝐼𝑃𝑑𝑖
𝑐𝑜𝑣))

𝛼𝑐
𝑎(𝑑𝑖)

𝛽𝑐 

The decision-maker then ranks the salience σ of each state s for Lj. This is expressed as 𝑘𝑠
𝑗
∈ {1,… , 𝑆}, 

with a lower 𝑘𝑠
𝑗
 indicating higher salience. Given this ranking, decision weights are defined: 

(11)    𝜔𝑠
𝑗
=

𝛿𝑘𝑠
𝑗

(∑ 𝛿𝑘𝑟
𝑗
∙𝜋𝑟𝑟=1:𝑆 )

 

where 𝛿 ∈ (0,1) represents a ‘local thinker’ coefficient that controls the distortion of perceived 

probabilities of each outcome given its salience (Bordalo et al., 2012). Decision weights 𝜔𝑠
𝑖  then modify 

the perceived probabilities of outcomes by: 

(12)    𝜋𝑠
𝑗
= 𝜋𝑠 ∙ 𝜔𝑠

𝑗
 

The salience function is then expressed as a salience value for each outcome 𝑣(𝑥𝑠
𝑗
), which is used to 

calculate the perceived value (V) of each behavioral option j given the perceived salience of lottery: 



(13)    𝑉(𝐿𝑗) = ∑ 𝜋𝑠
𝑗
𝑣(𝑥𝑠

𝑗
)𝑠∈𝑆  

The housing consumer then chooses the behavioral option that maximizes V at each housing location. The 

more general case of more than two behavioral options is described in Adaptive Responses. 

2.2.1.3. Developer profit-maximization with risk aversion 

The developer uses housing information, which would be available from a listing service or similar 

source, to form expectations of annual rental payments for different housing types in the next period (see 

Agent Prediction). This information includes the average past and current rent, lot size, house size, 

number of bidders before sale, percentage that sale price was above (or below) the original asking price, 

the number of houses of each type, and an approximation of residents’ income levels. For any given 

house, the developer uses financial prediction models (section 2.5.1) to form a rent expectation for that 

house in t + 1 given past rental information. Rent expectations are then used to make spatially explicit 

rent projections for all housing types in all undeveloped cells. 

The developer forms expectations of rents (𝐸⟨𝑅|ℎ, 𝑖, 𝑡⟩) for each housing type (h) in each cell i in time t 

based on past rent information. Expected returns (𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩) before land purchase are calculated for 

each housing type net of construction and infrastructure costs (ccost), last period’s carrying costs (Ccarry), 

which are applied equally over all acres demanded (Ad) in time t, and a profit target (1− r) equal to a 

normal rate of return (r) of 5%: 

(14)    𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ = (1 − 𝑟)
(𝐸⟨𝑅|ℎ, 𝑖, 𝑡⟩−𝑐𝑐𝑜𝑠𝑡)

𝑧
−
𝐶𝑐𝑎𝑟𝑟𝑦|𝑡−1

𝐴𝑑,𝑡
 

where z converts expected returns per lot to expected returns per acre. If newly bought land parcels or 

newly constructed houses remain vacant, carrying costs (Ccarry) are incurred by the developer annually 

and do not compound over time. Carrying costs represent costs to the developer associated with holding 

vacant property; for example, interest accrued on loans financing the development project or foregone 

interest on an alternative safe investment. Carrying costs for vacant land equal 5% interest on the price 

paid for land. Carrying costs for vacant houses equal 5% interest on the combined price paid for land and 

annualized construction costs of the particular housing type. Thus, available capital in a given period is 

constrained by the amount of vacant land or houses the developer owns, which influences how much land 

the developer can acquire each period. 

Loss-aversion is taken into account using the prediction error, σ, associated with the most successful rent 

prediction model for each housing type (see Agent Prediction). Based on this prediction error, expected 

returns are bracketed by high and low estimates for housing type h in cell i at time t. 

 

(15)    high𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ = (1 − 𝑟)
(𝜎𝑡−1+𝐸⟨𝑅|ℎ, 𝑖, 𝑡⟩−𝑐𝑐𝑜𝑠𝑡)

𝑧
−
𝐶𝑐𝑎𝑟𝑟𝑦|𝑡−1

𝐴𝑑,𝑡
 

   low𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ = (1 − 𝑟)
(𝐸⟨𝑅|ℎ, 𝑖, 𝑡⟩−𝜎𝑡−1−𝑐𝑐𝑜𝑠𝑡)

𝑧
−
𝐶𝑐𝑎𝑟𝑟𝑦|𝑡−1

𝐴𝑑,𝑡
 

High and low estimates of expected returns are then considered in a risk-aversion framework modified 

from Ligmann-Zielinska (2009) to conform to prospect theory. Potential gains (potgain) and losses 

(potloss) are calculated relative to a reference point of zero, which represents meeting the profit target of 

a normal rate of return applied in the equations. 



(16)  potgain(ℎ, 𝑖, 𝑡) =

{
 
 

 
 (

high𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩
𝜔𝑔𝑎𝑖𝑛

)

1

𝜔𝑔𝑎𝑖𝑛
,                                         if high𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ > 0

0,                                                                                  if high𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ ≤ 0

potgain(ℎ, 𝑖) + (
low𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩

𝜔𝑔𝑎𝑖𝑛
)

1

𝜔𝑔𝑎𝑖𝑛
,            if low𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ ≥ 0

 

potloss(ℎ, 𝑖, 𝑡) =

{
  
 

  
 
(
high𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩

𝜔𝑙𝑜𝑠𝑠
)

1
𝜔𝑙𝑜𝑠𝑠

,                                         if high𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ ≤ 0

potloss(ℎ, 𝑖) + (
low𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩

𝜔𝑙𝑜𝑠𝑠
)

1
𝜔𝑙𝑜𝑠𝑠

,            if low𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ < 0

0,                                                                                     if low𝐸⟨𝑅𝑒𝑡|ℎ, 𝑖, 𝑡⟩ ≥ 0

 

 

where ωgain = 3 and ωloss = 2.5 are skewedness factors modified from Ligmann-Zielinska (2009) to 

reproduce the value function in figure 1. Expected utility from each housing type is then calculated as: 

(17)    𝐸⟨𝑈|ℎ, 𝑖, 𝑡⟩ =
potgain(ℎ,𝑖,𝑡)

potgain(ℎ,𝑖,𝑡)+potloss(ℎ,𝑖.𝑡)
 

Housing types are ranked from highest to lowest expected utility to the developer excluding those with 

negative expected returns. This ranking gives the order in which housing types will be built. 

 

In each landscape cell, an average of expected return is calculated, 𝐸⟨𝑅𝑒𝑡̅̅ ̅̅ ̅|ℎ̂, 𝑖, 𝑡⟩, from the set of housing 

types with positive expected rents, ℎ̂. The developer forms a WTP for each landowner’s holdings (Fn) as 

the average of 𝐸⟨𝑅𝑒𝑡̅̅ ̅̅ ̅|ℎ̂, 𝑖, 𝑡⟩ across all cells contained within the landowner’s holdings (i ∈ Fn) with total 

acres, A: 

(18)    𝑊𝑇𝑃(𝐹𝑛, 𝑡) =
1

𝐴𝐹𝑛
∑

∑𝐸⟨𝑈|ℎ, 𝑖, 𝑡⟩𝐸⟨𝑅𝑒𝑡̅̅ ̅̅ ̅|ℎ̂, 𝑖, 𝑡⟩

𝐸⟨𝑈|ℎ, 𝑖, 𝑡⟩𝑗=𝑖∈𝐹𝑛  

 

2.2.1.4. Landowner profit-maximization 

Landowner expectations of land prices are formed using the same price prediction as the developer (see 

(Agent Prediction). A landowner’s decision to sell to a developer or continue to hold the land in the same 

land use is based on the expected return from selling relative to the value of the land in its current use in 

perpetuity. The landowner’s willingness to accept (WTA) price is set dynamically to the greater of the 

two values. This enables the landowner to capture speculative gains from sale of land when development 

pressure is high, while enforcing a rational threshold below which the landowner would be better-off 

continuing the current land use. 

2.3. Learning 

Developer and landowner agents form price expectations each time step (see Agent Prediction). Each 

agent has a diversity of methods for forming predictions. Predictions are compared with observed prices 

each time step to evaluate each prediction method and record its cumulative error. Using reinforcement 

learning, each agent selects the method that minimizes cumulative error over time. 



2.4. Agent sensing 

During the competitive house bidding process (see Interactions), residential housing consumers observe 

the number of other consumers bidding on the same set of housing on which they are bidding. Based on 

the ratio of houses on which they are bidding to competing consumers, consumer agents can adjust their 

bids to be more competitive or maximize their utility by bidding less than the asking price.  

The developer can observe spatially explicit neighborhood characteristics in the housing market. Within 

each extended von Neumann neighborhood (8x8 cells), the developer knows how many consumers bid on 

each housing type, the average consumer incomes and housing and amenity preferences of residents, and 

average housing prices for each housing type.  

Finally, landowners can observe the number and location of other landowners, which influences their 

bargaining power (see Interactions) with the developer. 

2.5. Agent prediction 

2.5.1. Financial Prediction Models 

Developers and landowners make pricing decisions informed by expectations of future housing and land 

prices, respectively. Adapted from price expectation models used in agent-based financial literature (e.g. 

Arthur, 1994, 2006; Axtell, 2005), agents try to predict next period’s price based on current and past price 

information. An agent is given a set of twenty prediction models. Each prediction model may use one of 

six different prediction methods, and there may be more than one model applying the same prediction 

method in the agent’s set of twenty models. Some of these prediction methods map past and present 

prices (P) into the next period using various extrapolation methods. 

1. Mean model: predicts that P(t+1) will be the mean price of the last x periods. 

(19)    𝑃(𝑡 + 1) =
∑ 𝑃(𝑡𝑖)𝑖=𝑡−𝑥:𝑡

𝑥
 

2. Cycle model: predicts that P(t+1) will be the same as x periods ago (cycle detector). 

(20)    𝑃(𝑡 + 1) = 𝑃(𝑡 − 𝑥) 

3. Projection model: predicts that P(t+1) will be the least-squares, non-linear trend over the last x periods. 

(21)    P t 1  aP ts 
2
 bP ts  c ; 

where ts is the time span of t-x to t, and a, b, and c are coefficients of fit. 

Other methods translate changes from only last period’s price to next period’s price. 

4. Mirror model: predicts that P(t+1) will be a given fraction  of the difference in this period’s price, 

P(t), from last period’s price, P(t-1), from the mirror image around half of P(t). 

(22)    𝑃(𝑡 + 1) = 0.5𝑃(𝑡) + [0.5𝑃(𝑡) − (1 − 𝜉)(𝑃(𝑡) − 𝑃(𝑡 − 1))] 

5. Re-scale model: predicts that P(t+1) will be a given factor  of this period’s price bounded by [0,2]. 

(23)    𝑃(𝑡 + 1) = 휁𝑃(𝑡) 



6. Regional model: predicts that P(t+1) is influenced by regional price information coming from 

neighboring agents.  

For landowners, land prices are a function land scarcity as measured by the number of remaining 

landowners, Nf, in the region at time t. 

(24)    P t 1  P t  1
1

N f









  

For developers, the expected price of house types with size, h, on lot size, l, in a given neighborhood, Nb, 

is the mean of prices of house and lots of the same sizes in adjacent neighborhoods, Nnei. Nnei are 

neighbors in the cardinal directions. 

(25)    P Nb|hl ,t 1  mean P Nnei |hl ,t   

All models in the agent’s set of prediction models are used to predict the price in the next time period 

(P(t+1)). In time t+1, the actual price is known and the performance of each model is determined by 

squaring the difference between the predicted price and the actual price. The prediction model with the 

least error is used to make the agent’s pricing decisions in the current period. This same process of 

prediction and evaluation is used every period so that the most successful prediction model is used every 

time. However, prediction model error is cumulative such that the most successful model may not 

continue to be over time. 

2.5.2. Developer’s ‘New Consumers’ Prediction Models and Demand for Land 

Adapted from Arthur’s (1994) “El Farol Problem”, the developer attempts to predict the population at 

time t using past population information from the last ten years. Population information for time t is not 

known until new consumers bid for houses on the housing market (section A.4). Just as agents are 

allocated twenty financial prediction models, developers are allocated twenty population prediction 

models. However, instead of receiving six different predictions methods, developers receive only the first 

five prediction methods listed above in Section A.1.1. For trends in population from time t-x to t -1 

(where x ranges from two to ten years in the past), developers attempt to predict how many new 

consumers will enter the market in time t.  

The developer uses this prediction as the number of new consumers in time t, which corresponds to the 

number of new houses that need to be supplied in time t for new consumers, Nnew. In addition, the 

developer observes the number of consumers who bid on houses but were not the highest bidder on any 

house in t-1 and therefore did not locate in the region, Nold. By combining the number of houses needed 

for new consumers (Nnew) and consumers from last period that did not locate (Nold), the number of new 

houses that need to be constructed in the current period (Hnew) is calculated.  

(26)    H new (t)  Nnew (t)  Nold (t 1)  

Based on the developer’s rent projections (section A.2.2), the Hnew most profitable houses are chosen for 

construction later in the period. Given this housing set and the associated land required to build each, the 

developer calculates how much land will be needed in the current period. The developer’s demand for 

land is then the difference between the amount of land needed for new construction and the amount of 



vacant land already owned by the developer from previous land purchases (if any). For example, if the 

developer calculates ten new houses are needed in time t and the ten most profitable houses require two 

acres each, but the developer already owns five acres that are vacant, the developer’s demand for land in 

the current period will be fifteen acres. 

2.5.3. Landowner’s Spatial Discounting Models 

Land is an immobile good with spatially heterogeneous attributes, thus land prices vary in space and time. 

Landowners observe the price and location of one or more land transactions through time. A landowner 

then attempts to discount the observed transaction price(s) based on the distance from his location. The 

spatially discounted price(s) accounts for spatially variable land values and enables an adjustment of land 

prices based solely on trends in the market land price.  

A coefficient of spatial discounting is predicted using a genetic algorithm that enables the landowner to 

‘learn’ the best coefficient over time (see Agent Learning). Initially, each landowner is allocated a 

‘population’ of 100 random coefficients bounded by [-200, 200]. After the transaction price(s) is 

observed, it is discounted using each coefficient in the landowner’s ‘population’ of the coefficients and 

compared to the landowner’s current asking price to evaluate the ‘fitness’ of each coefficient.  

(27)   i (t)  i (t 1)
Pask |F (t) PL |F (t)

DF







 i ; 

where the fitness, i, of coefficient i is the absolute value of the difference between the current asking 

price of landowner F, Pask|F, and the average of the transaction price(s), PL , divided by the average 

distance, DF , of the observed transaction price(s) from landowner F. ‘Fitness’ is measured as such so 

that the ‘most fit’ coefficient will be the one with the least error. The ‘most fit’ coefficient is designated as 

‘active’ and is used as L in Equation 24 to spatially discount observed transaction prices. 

The landowner spatially discounts the observed transaction price(s) by predicting the coefficient of spatial 

discounting in a linear extrapolation to give the spatially discounted price, PL |F , faced by landowner F. 

(28)    PL|F(t)  LDF  PL(t) ; 

The coefficient of spatial discounting, L, represents the marginal discount of the observed transaction 

price(s) per cell away from landowner F. The spatially discounted price, PL |F , is then given as an input 

into the landowner’s financial prediction models (see Agent Prediction). 

2.6. Interactions 

2.6.1. Housing market competition 

Residential housing consumers competitively bid with other consumers to maximize their objective 

functions given asking prices of houses, personal budget constraints, location, perceived risk of storm 

damage, and competition from other consumers. Consumers place bids on all houses that generate 

positive utility or salience value (depending on objective function) and are thus within their budget 

constraints given asking prices. Each consumer observes the number of other consumers placing bids on 

their set of prospective houses and adjusts their bid according to competition levels. If there are more bids 

than there are houses being bid on, then bid prices are adjusted upwards. If there are fewer bids than there 



are houses being bid on, then bid prices are adjusted downwards. Bid adjustments are designed to reflect 

the relative supply of and demand for housing and quantify competition with the housing market. While 

the design choice of allowing any agent to simultaneously bid on multiple houses is not necessarily how it 

happens in the real world, it does capture effects of competition information communicated by real estate 

agents. Even if real estate agents do not know the amounts of competing bids at the time a client’s bid is 

placed, they often communicate the level of interest from other consumers. Thus, a housing consumer’s 

bid is based on the number of other bidders, rather than the amount of competing bids. This feature, 

combined with the one round, sealed-bid auction style of the algorithm used to calculate the transaction 

price, has minimal inflationary effects on prices (i.e., ‘bidding wars’) that would stem from allowing 

simultaneous bids on multiple houses. 

A given consumer will bid on the set of houses for which their WTP is greater than or equal to the 

developer’s asking price. The housing-market competition factor, HMC, describes the competition for 

housing each consumer faces in the housing market: 

(29)    𝐻𝑀𝐶𝑐 =
𝑁𝐶−𝑁𝐻

𝑁𝐶+𝑁𝐻
 

where NH is the number of houses the consumer bids on and NC is the number of other consumers bidding 

on those same houses. Consumer c then sets a bid price for each house in response to market conditions. 

Competition is high for a given consumer if there are more bidders for the houses he/she is bidding on 

than there are houses, and the bid will be increased. Competition is relatively low if there are more houses 

he/she is bidding on than total bidders for those houses, and the bid is adjusted downward. The 

adjustment of consumers’ bid prices in response to market conditions allows consumers to attempt to 

maximize their gains from trade and the likelihood that they will be the highest bidder.  

Houses are assigned to consumers with the highest bids for each house. If a consumer has the winning bid 

on multiple houses, then the consumer chooses the house that generates the highest utility given the 

winning bid prices. Consumers that locate in a house are assigned a residence time drawn randomly from 

a normal distribution (µ=12.5, σ=11 time steps). When residence time is exceeded, the consumer moves-

out, re-enters the consumer pool, and the newly vacant house is put back on the market. This ensures 

regular turnover in the housing market due to unobservable events (e.g., relocation due to change in 

employment). Consumers that do not locate after three consecutive time steps are removed from the 

consumer pool. New housing consumers are introduced into the ‘consumer pool’ of existing consumers at 

the start of each time step at a rate of ten percent a year. 

2.6.2. Bargaining power in the land market 

If the developer’s WTP for a given landowner’s holding is greater than the landowner’s WTA for land, 

then the two enter into bilateral negotiation to determine the final transaction price. Bargaining power in 

the land market, ε, is adapted from Parker and Filatova (2008) and captures differences in the developer’s 

demand for, and the landowners’ supply of, land at the initial WTP of the developer. 

(30)    휀 =
𝑑𝐿𝑎𝑛𝑑−𝐴𝐹∗

𝑑𝐿𝑎𝑛𝑑+𝐴𝐹∗
 

where dLand is the acreage demanded by the developer and AF* is the acreage supplied by participating 

landowners. F* is the subset of all landowners for which the condition WTP > WTA is true. If the 

developer demands more land than landowners supply, ε is positive and landowners ask a price above 

their WTA. If landowners supply more land than is demanded by the developer, ε is negative and the 

developer will bid below the initial WTP. The amount of land supplied by landowners in any given period 



depends on the initial WTP of the developer for each landowner’s holdings, which depends on rent 

expectations in the housing market. Thus, the housing and land markets are explicitly linked. 

2.7. Collectives 

No collectives are represented in this model. 

2.8. Stochasticity 

Each model execution uses a different random number seed to generate stochasticity in model outcomes. 

Both developer and landowner agents are allocated a set of prediction models (see Agent Prediction) 

during model initialization that differ in time horizon and prediction method. Each initialization entails a 

random allocation of prediction models to each agent. Also, in the case of ties during competitive bidding 

in the housing and/or land markets, among residential housing consumers and landowners, respectively, 

the winner is randomly chosen. Finally, as described in Environment (section 1.2.2), storms are randomly 

generated each time step with a probability equal to the historical average of the storm climate of interest. 

2.9. Observation 

The primary metrics extracted from model results are descriptive statistics of development extent; number 

and location of all housing types; land and housing prices; timing and location of land sales and housing 

construction; vacancy rates; located (i.e., resident) consumer incomes and preferences; rate of relocations; 

consumer characteristics of relocations; income and housing and land price distributions; and consumer 

utilities relative to optimum housing option. All of these metrics are associated with emergent patterns. 

All of these metrics are capable of being both spatially- and temporally-explicit, stored as maps for each 

time step (i.e., ‘data bricks’), but can also be aggregated to average values over time and/or final state 

measures. 

Data is also extracted and summarized relative to the occurrence of storms. The time step of each storm in 

every model execution is identified and indexed. Using this index, all relevant metrics are gathered and 

classified by time steps before and after each storm event. These metric are then summarized (e.g., 

median or average values) for each time step before/after a storm across model executions. This 

procedure is repeated for all storms even if multiple storms occur per model execution. 

3. Details 

3.1. Implementation details 

The model code is implemented in Matlab and is written to leverage Matlab’s Parallel Processing 

Toolbox to execute model runs in parallel (i.e., across implementations rather than within each 

implementation). The code if freely available on OpenABM.org. 

3.2. Initialization 

Each model execution is initialized with a developed central business district (CBD) and other existing 

residential development around the CBD and along the coastline. The initial development pattern is the 

average result of thirty ‘spin-up’ simulation runs. This was calculated by observing the average percent 

developed area for the entire region across the spin-up runs, and selecting the most frequently developed 

cells across spin-up runs until the total developed area equaled the observed average percent of developed 

area. To initialize housing prices, the first ten time steps of experimental simulation runs are used to find 

stable levels given consumer demand for housing in the initial landscape development pattern. Initial 

housing asking prices are set equal to their land and construction costs (i.e., zero profit), and residential 



housing consumers with randomly allocated incomes and housing preferences, and equal in number to 

available houses, competitively bid on housing. When all winning bidders have been assigned to houses 

or no positive bids remain, the bidding process stops. Housing sale prices are observed and set as new 

asking prices, all houses are set to vacant, and the same consumers repeat the bidding process. The 

initialization period finishes when the average difference between asking and sale prices is less than one 

percent. Housing prices in the initialization period provide a price history used for the developer’s rent 

prediction models during dynamic simulation. 

Developer and landowner agents are also randomly allocated price prediction models at the start of each 

model execution (see Agent Prediction and Stochasticity). 

3.3. Input data 

The baseline storm probability, or ‘storm climate’, is calculated from annual probabilities (Costanza et al., 

2008) from the Mid-Atlantic region consisting of Maryland, Virginia, Delaware, Pennsylvania, and New 

Jersey. Alternative scenarios with higher probabilities of storm occurrence are implemented using the 

storm climates of North Carolina, Texas, and Florida. Spatially explicit expected damages in the event of 

a storm are calculated via a three-step approach. First, the coastal flood module of the Hazus-MH model 

(FEMA, 2012; Scawthron et al., 2006) is run for the coastal areas of Maryland to obtain flood depths in a 

100-year storm event at a 30-meter resolution. Second, percent property value loss as a function of flood 

depth is calculated based on US. Army Corps of Engineers (USACE, 2006) damage functions and using 

residential property values from the MDProperty View dataset (MDP). Finally, percent property value 

losses are regressed against distance to the coast to estimate a spatially explicit damage gradient. 

Land values in uses other than residential development (e.g., agriculture) are aggregated and averaged by 

counties in Maryland from the U.S. Department of Agriculture’s Agricultural Census (NASS, 2012). 

Infrastructure and square footage construction costs are estimated from Frank (1989) and Fodor (1997). 

Transportation costs are estimated in terms of travel time and out of pocket expenses (BTS, 2007). Time 

costs are assumed to be a function of average road speed (30 mph), average number of workers per house 

(2), average wage per person ($30/h), value of time as a percent of wage (50%), and the road network 

indirectness coefficient (0.3) (this is the ratio of network distance to the Euclidian distance). Calculations 

in that study based on U.S. Bureau of Labor Statistics’ Consumer Expenditure Survey Safirova et al. 

(2006). 

3.4. Submodels 

3.4.1. Residential Consumer Bid Formation 

With a limited number of houses available at any given point in time, consumers may not always be able 

to locate in the house that provides the highest utility. Thus, we compute a bid, R* (c, n), for each housing 

option available for each consumer that reflects the relative utility difference between that option and the 

one that produces the maximum utility, U*: 

(31)    𝑅∗(𝑐, 𝑛) = 𝑃𝑎𝑠𝑘|𝑛
𝑈(𝑐,𝑛)

𝑈∗
 

The consumer’s bid for any particular house is then the minimum of their constant share of income for 

housing as shown in Equation 3 (i.e., WTP) or the bid price calculated here. The degree to which the bid 

differs from WTP depends on the relative utility of each housing option, the consumer’s income, and 

idiosyncratic preferences, as well as the developer’s asking prices. 

3.4.2. Rules for Matching Consumers with Houses 



After the bidding process is completed, the highest bidder for each house is identified. For each consumer 

in the set of winning bidders, the set of houses for which the consumer owns the highest bid is identified. 

The consumer’s utility is recalculated for each of these houses using the winning bid instead of the initial 

asking price. Given these new levels of utility, the consumer is matched with the house that produces the 

highest utility. Once a consumer is matched with a house, both the consumer and house are removed from 

the market. The matching process is reiterated with the remaining bids, which are kept constant, until all 

consumers are matched, all houses are occupied, or all positive bids are exhausted. This process ensures 

consumers are matched to houses that generate their maximum possible utility levels given competitive 

bids from other consumers and discrete housing options provided by the developer. 

3.4.3. Developer Rent Projections 

Rent projections are calculated as the weighted combination of local and regional (suburb-wide) expected 

rents for existing houses (Magliocca et al, 2011). The method of rent projection depends on the level of 

uncertainty in rent expectations. If a given housing type has been built, a spatially weighted extrapolation 

is made based on distance and price trends. If the given housing type has not yet been built within the 

region, the developer relies on a hedonic regression model based on existing housing characteristics. The 

hedonic regression uses median consumer income (x1) from similar housing types, lot size of the given 

housing type, h (x2), and travel costs (x3) to and amenity level (x4) in the given location, i, to project an 

expected rent: 

(32)    𝑅𝑝𝑟𝑜𝑗(𝑖, ℎ) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 

3.4.4. Dynamic Subjective Risk Perception 

A common Bayesian learning model (Viscusi, 1991) provides a formalization of dynamic, subjective risk 

perception in which individual housing consumer agents observe the occurrence of a storm event and 

update their expected probability of future storms (Davis, 2004; DeGroot, 1970). However, additional 

empirical evidence demonstrates that not only does risk perception diverge from objective levels over 

time, but also the rate at which it diverges varies in relation to time since a hazard event (e.g., Atreya and 

Ferreira, 2012; Bin and Landry, 2013; Gallagher, 2014). This is modeled by modifying the Bayesian 

updating model with a weighting parameter that discounts past information (Camerer and Ho 1999; 

Malmendier and Nagel 2011).  

Following the formalization of Gallagher (2014), the expected annual probability of a storm E(p), or 

subjective risk perception, at time t is formalized as:   

(33)    𝐸(𝑝|𝑆𝑡
′, 𝑡′) =

𝑆𝑡
′+𝛼

𝑡′+𝛼+𝛽
 

where α and β are parameters of a beta distribution, 𝑆𝑡
′ = ∑ 𝑦𝑠𝛿

𝑡−𝑠𝑡
𝑠=1  are weighted storm observations, 

and 𝑡′ = ∑ 𝛿𝑡−𝑠𝑡
𝑠=1  is the number of yearly observation ‘equivalents with time-weighting parameter 𝛿 =

0.91 following the findings of Gallagher (2014). 

3.4.5. Adaptive Responses 

In the absence of storm events, location decisions by incoming residential housing consumers are made 

on an annual basis (same as the scheduling for developer and landowner decisions). When a storm event 

occurs, existing, located housing consumers (i.e., residents) undertake a re-evaluation of their current 

location and decision to purchase (or not) insurance given updated storm risk information (see Dynamic 

Subjective Risk Perception). Specifically, residents evaluate the value of remaining in place, remaining in 



place and purchasing insurance, or relocating to another available house within or outside the region. The 

user-specified objective function is used to value alternative options (see Objective Functions). 

Relocation decisions are based on the stress-resistance model (Benenson, 1998). The decision to relocate 

occurs in two steps. The first step is an evaluation of ‘stress’ by comparing the current satisfaction (i.e., 

utility or salience value) of the housing location to past satisfaction level at the time of move-in. 

Following Robinson et al. (2010), a resident is considered ‘stressed’ if satisfaction level decreases by 

15%. All housing consumer attributes remain fixed throughout the simulation, so the only variable factors 

influencing this decision updated risk perception and asking prices of available housing. The second step 

involves ‘stressed’ residents evaluating whether the gain in satisfaction from available housing options is 

positive net of moving costs. Moving costs are heterogeneous among consumers (Table 1) and equal to 

10% of annual income. Residents considering relocation observe asking prices, locations, and amenity 

values of available houses within the region. A housing option external to the region has an asking price 

estimated with the developer’s regional rent expectation model (Eq. 28) assuming zero amenity value 

(i.e., inland). For evaluation of housing options within the region, the resident compares current 

satisfaction to the average level that could be achieved in available housing options, because a relocating 

consumer is not guaranteed to move into an available house (due to competitive bidding). Consumer 

choosing to relocate within the region must re-enter the consumer pool to competitively bid for available 

housing, and consumers choosing the external option are removed from the simulation. 
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