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ODD Description 
 
The model description follows the ODD (Overview, Design concepts, Details) protocol for 
describing agent-based models (Grimm et al. 2010).  
 
1. Purpose 
 
We seek to improve understanding of the roles enzyme production play in soil food webs.  
Specifically, the importance of spatial heterogeneity in the production of enzymes is of inter-
est.  Well-established methods of analyses use equation-based representations of interactions, 
often using ordinary differential equations.  In their typical use, those methods do not capture 
spatial variability in enzyme production or other interactions of soil biota.  We created an 
agent-based simulation of a simple food web that includes enzymatic activity.  Results from 
this spatial representation may be compared with the equation-based results to indicate the 
importance of spatial representations. 
 
2. Entities, state variables, and scales  
 
The simulation represents a thin layer of a 1/10th cm2 section of soil.  The area is composed of 
100 x 100 cells (10,000 cells), with the area a torus, such that cells on opposite edges of the 
area are considered neighbors.  Agents that move off one side of the area appear on the oppo-
site side.  That is a common approach that eliminates edge effects.  Time steps that are simu-
lated may be thought of as seconds, but remain loosely defined. 
 
The soil is populated by microbes and each has an energy value (in energy units).  Two other 
state variables store the energy consumed and the portion of energy that went to respiration 
through the life of the microbe, but these accumulators play no role in system dynamics.  
Predators may be placed in the system.  They have the same three variables, energy reflecting 
the condition of the predator and the accumulators storing consumed energy and energy lost 
to respiration.     
 
Each cell contains three quantities: 1) detritus particles, which may be acted upon by 2) en-
zymes produced by microbes to yield quantities of 3) food.  Some cells may be designated as 
roots, depending upon the scenario simulated.  An accumulator in each cell is not active in 
soil processes and used for bookkeeping only, storing the quantity of enzyme lost to degrada-
tion.  Enzymes and food units are scaled relative to other model components, so that enzymes 
are in ‘enzyme units’ and food is in ‘food units.’ 
 
Detritus is influenced by global variables that, 1: describe how much detritus enters the envi-
ronment each time step (units: particles); 2: the number of cells to which detritus is added 
each time step (units: cells); 3: the period between detritus additions (time step); and 4: the 
diffusion rate of the detritus through the environment (proportion).  Variables 1 and 4 are used 
in all simulations, 2 is used in simulations of detritus rainfall but not root exudates, and 3 is 
used when detritus is added to the system periodically.   
 
Microbes are influenced by the following global variables, 1: a speed (cells per time step); 2: 
an energy cost for each move made (energy units); 3: the value of a food item to the microbe 
(energy units); 4: the maximum rate detritus may be converted to food, known as vMax (time 
step); 5: the influence microbes on enzyme activity, beta (per microbe); 6: an enzymatic effi-
ciency (unitless); 7: proportion of energy acquired that is put to respiration (energy units); 8: 



 2

the energy needed for the microbe to divide (energy units); and 9: the contribution of a mi-
crobe that dies to detritus (particles). 
 
Predators have global variables analogous to microbes, including speed (1), movement cost 
(2), the value of a food item (a microbe) to the predator (3), proportion energy used for respi-
ration(7), energy to divide (9), and contribution to detritus (9).  There is also a maximum rate 
of capture of microbes (microbes per time step).   Both microbes and predators store their 
current locations and internal identifiers as well. 
 
Parameters controlling the production or influence of enzymes include, 1: a half-life for en-
zymatic decay (units: time steps); 2: the enzymatic concentration in a cell, above which a mi-
crobe will not produce more enzyme (enzyme units); 3: the cost to produce one enzyme (en-
ergy units); 4: an energy buffer, below which microbes will not produce enzyme (energy 
units); 5: enzymatic diffusion rate (proportion); and 6: the food produced per unit enzyme, 
given sufficient substrate (food units). 
 
3. Process overview and scheduling 
 
The model is implemented in NetLogo version 5.0 using a discrete representation of time.  
After initialization (see section 5), the following processes occur, with each process expanded 
upon in a discussion of the submodels used (see section 7) and the name of the process in pa-
rentheses.   
 
Simulate time step  
 Store variables for use in phase space plots (i.e., values at t-1) 
 Microbes move     (move) 
 Predators move     (move-predators) 
 Microbes produce enzymes    (produce-enzyme) 
 Diffuse enzymes across area    (diffuse-enzyme) 
 Convert detritus to food    (convert-to-food) 
 Microbes feed      (feed) 
 Predators feed      (feed-predators) 
 Mortality of microbes if energy depleted   (mortality) 
 Mortality of predators if energy depleted   (mortality-predators) 
 Reproduce microbes     (reproduce) 
 Reproduce predators     (reproduce-predators) 
 Allow enzymes to decay    (decay-enzymes)  
 Add detritus using one of the following four: 
  Rain detritus continuously   (detritus-rain) 
  Rain detritus periodically   (detritus-period) 
  Detritus from roots, continuously  (detritus-root-continuous) 
  Detritus from roots, periodic   (detritus-root-periodic) 
 Diffuse detritus throughout the area    
 Store variables for phase space plots (i.e., values at t)  
 Store variables for long-term accumulators 
 Update the user interface 
 Stop if predators are extinct 
End current time step and proceed with the next time step 
   
4. Design concepts 
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Basic principles:  The simulation is constructed to allow users to explore aspects of enzyme 
production in microbes, in a two-dimensional unit of soil that includes predators.   Detritus is 
added to the soil in one of four combinations of two factors: continuous or periodic inflow, 
and distributed randomly or along roots.  The configurations of roots may be changed.  Mi-
crobes move randomly across the soil, and produce enzymes in the presence of detritus.  The 
enzymes convert detritus to materials that the microbes may consume and gain energy (i.e., 
food).  Energy is spent by microbes through enzyme production, movement, and reproduc-
tion, and if energy drops to zero for a given microbe, it dies.  Predators are present in the soil 
in some simulations, and feed on microbes if they share the same location, up to some number 
of microbes that may be eaten.  Like the microbes, predators gain energy from the microbes 
they eat, use energy to move and to reproduce, and if an individual’s energy is depleted it 
dies.  Respiration of microbes and predators is accumulated during simulations. 
 
The model represents a stylized soil patch, with parameters controlling dynamics set through 
references to known relationships where possible.  That said, the values or ranges of variables 
are sometimes not known.  The simulation is intended to provide an experimental platform to 
help understand how system attributes relate, rather than represent a particular soil and biotic 
community.  By adjusting parameters and rates, such as the rate of degradation of enzymes, 
rate of detritus inputs, energy required by microbes and predators to reproduce, and patterns 
of root formation, users may explore how the dynamics and spatial patterning of soil biota 
relate to primary system attributes.   
 
Emergence:  Two major emergent properties are of most interest, the population responses of 
microbes and predators and their interactions, and the spatial distribution of microbes, preda-
tors, detritus, food, and enzymes.  The cyclic responses of biota are of interest, and especially 
the longevity of populations.  The stability of the system components in four patterns of detri-
tus delivery are of particular interest: with roots and continuous detritus delivery, with roots 
and periodic detritus delivery, with rain in randomly selected cells in continuous delivery, and 
with rain in randomly selected cells in a periodic delivery of detritus. 
 
Adaptation, Objectives, and Learning:  The organisms in the simulation do not adapt in the 
broadest sense in this application.  There is no capacity in this application for the heredity of 
traits from one generation to the next, beyond the trivial inheritance of an energy level of a 
new organism during fission.  Microbes may produce or not produce enzymes based the con-
centration of enzymes in a given cell.  Microbes and predators have no inherent objectives.  
They share feeding behavior and will reproduce and populate a space, but have no intrinsic 
objectives beyond these.  Learning is not part of the current simulation. 
 
Prediction: The organisms represented in the simulation do not make predictions in any direct 
sense.  Microbes do modify their environment for their future benefit by producing enzymes 
that convert detritus to food that may be consumed.  Microbes move while producing en-
zymes, but the biased random walk they perform plus the diffusion applied to enzymes means 
that the individual producers of enzymes are likely to benefit from the investment. 
 
Sensing:  Microbes and predators can sense the food and other resources that occur on the cell 
they occupy.  Specifically, microbes are aware of the presence of detritus and the concentra-
tion of enzymes.  If the concentration of enzymes exceeds a threshold, microbes do not pro-
duce more enzymes.  Microbes are aware of the presence of food, and predators are aware of 
the presence of microbes on their cell.   
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Interaction: Microbes compete for food resources, as do predators.  Predators feed on mi-
crobes.   
 
Stochasticity: Many aspects of the simulation include stochastic components.  The locations 
of roots are random and their growth during initialization includes random turning angles and 
a stochastic probability of branching for roots based on a normally distributed branching angle 
and a deviation indicated in a global variable.  The initial locations of microbes and predators 
are random (see Section 5).   
 
The modeling tool used randomizes the order in which agents and cells perform operations.  
For microbes and predators, they turn a random heading prior to moving during a time step.   
When predators feed on in a cell that contains more than the maximum microbes that they can 
eat within a given time step, the microbes they do eat are selected randomly.  When detritus is 
added to the simulation without roots present, patches that receive detritus are selected ran-
domly, each time step if using a continuous addition of detritus, or each period if that option is 
used.   
 
Observation:  Populations of microbes and predators, and average concentrations of detritus, 
enzymes, and food are stored from each simulation.  Simulation parameters are stored as well, 
such as the use of roots in modeling or not.  As simulations progress, plots show the numbers 
of microbes and predators, plus the average detritus, enzymes, and food available across the 
cells.  Another set of plots provide phase diagrams of microbes versus predators, microbes at 
the current and previous time step, and predators at the current and previous time step.   Cur-
rent values are displayed for populations of microbes and predators and their average energy, 
the length of roots, and average detritus, enzymes, and food in cells. 
 The main outputs of each simulation were summarized over the long term, defined in 
the model as 500 time steps.  The number of microbes, predators, microbe respiration, preda-
tor respiration, and average enzymes, detritus, and food were stored in lists at each time step.  
After 500 time steps, the oldest entries were discarded from the lists and the newest added, 
always ensuring that the latest 500 time steps were retained.  The average of these lists were 
then reported at the end of each simulation.   
 
5. Initialization 
 
The model is initialized by setting up the cells in the environment, initializing microbes and 
predators, and if part of the requested simulation, roots in the environment.  Each is described 
below, with pseudo-code given for the sub-model that grows roots. 
 
To setup cells in the environment, an initial quantity of detritus is assigned, if roots are not 
being simulated (in that instance, detritus is initialized in a following step).  Food, enzymes, 
and the root indicator are set to zero.  The color used to display the cell is initialized based on 
detritus present. 
 
To setup microbes, a number of microbes are created based on an adjustable global variable.  
Their appearance is set, energy is initialized to a global variable describing initial microbe 
energy, and their location in the environment is set randomly.  Two accumulators showing the 
energy consumed and energy respired are set to zero.  
 
Predators are initialized in a manner analogous to microbes.  The number of predators to cre-
ate is controlled by their own global variable (i.e., initial predators), and the energy they begin 
with is set by a global parameter, initial predator energy. 
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Roots are grown within the environment to initialize the system.  In summary, a number of 
root tips are created, and then those tips grow in response to a series of parameters.  As the 
root tips move through the environment, the cells they move through are labeled as roots.   In 
the current application, roots grow only during initialization; during simulations, root patches 
do not change.  In pseudo-code, the method is: 
 
 Create a number of root tips, controlled by a global variable, and place them randomly 
 Assign to the root tips a random heading 
 While root length, represented by the sum of cells that are roots, - 

   is less than an adjustable total root length  
  For one randomly selected root tip 
   Turn the heading of the tip by an adjustable angle, centered on zero - 
      meaning no turn 
   Move forward one cell and label it as root 
   Initialize detritus in that cell, based on a global setting 
   At some small probability 
    Create a new root tip, representing a bifurcation of the root 
    Set the heading of new tip based on a normally distributed - 
       mean and standard deviation angle 
  Update the root length 
 Continue while root length loop 
 
The root tips that are created grow one cell at a time, each tip selected randomly for its oppor-
tunity to grow.  This allows the initialization to match the number of cells that should be root 
precisely.  A biased random walk is represented for the root tip.   As roots grow, there is a 
probability the tip will branch, creating a new root tip.   When that branching occurs, the 
heading of the new root tip is determined from a normal distribution with a specified mean 
and standard deviation. 
 
With roots fully grown, the parameters controlling their initialization are no longer used, and 
roots are static during a simulation.  The remaining step for initialization is for the system to 
calculate root clumpiness (see section 7).  That clumpiness index indicates the linearity or 
contagion of roots. 
 
6. Input data 
 
No input data are used in the model.  The dynamics in the simulation derive from the model 
structure, parameters provided, and spatial heterogeneity. 
 
7. Submodels 
 
Here we expand upon the submodels cited in section 3 and others, and the logic and assess-
ment of their structures.  Each is identified by the name used in simulation and their intent, as 
in section 3.  Pseudocode summarizes the submodel, then notes are provided.  For brevity we 
cite here that in every case entities are asked to perform a function, they do so asynchronously 
and with their orders determined randomly each time step.  The values of parameters used in 
the model are discussed in more depth in the manuscript accompanying this ODD. 
 
move      (Microbes move)     
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 For each microbe: 
  Turn a random angle, to face a random direction 
  Move forward equal to the value of the microbial speed variable 
  Subtract microbial movement energy cost from the microbe’s energy 
 Next microbe 
 
A random walk model was adopted for microbes as the most parsimonious approach to repre-
senting microbial movements, and is a common approach (Duffy 1995).  The bacteria repre-
sented by microbe agents are mobile but passive, changing location as they are carried along 
as ecosystem elements diffuse. 
 
move-predators   (Predators move)      
 
Predators were simulated in a manner analogous to microbes, and follow the pseudocode 
shown under ‘move.’  Predators have their own speed and energy costs for movement.  Future 
applications may include sensing and hunting behavior in predators, but for simplicity this 
application uses random walk movements. 
 
produce-enzyme    (Microbes produce enzymes) 
 
 For each microbe: 
  If the quantity of enzyme in the cell is less than a threshold and - 

If the microbe has more energy than the cost of producing an enzyme  
  times a buffer then 

   Add an enzyme unit to the cell enzyme quantity 
   Reduce microbe energy by the cost of producing an enzyme 
  End if  
 Next microbe 
 
A threshold is compared to the enzyme concentration in the cell, allowing a microbe on the 
cell to avoid producing enzyme if it would only add to an already abundant concentration.  
There is also a buffer internal to the microbe that dictates that the organisms’ energy must be 
above some threshold prior to enzyme production.  This allowed us to capture the idea that 
microbes may not produce enzymes if they are extremely low in energy. 
 
diffuse-enzyme  (Diffuse enzymes across the soil) 
 
This is a single-line sub-model and so pseudocode is not needed.  The sub-model diffuses 
enzymes across the cells in the model.  The structure of that process is that a diffusion rate 
between 0.0 and 1.0 is provided, and that value influences the flow of quantities from each 
focal cell to its eight neighbors.  If the value is 0.0, no diffusion occurs.  If the value is 1.0, the 
contents of the cell flow completely into the neighboring cells, with each receiving 12.5% of 
the contents (8 cells x 12.5 = 100%).  That said, material in neighboring cells may diffuse 
back into the focal cell.  Most processes in the model are asynchronous, but diffusion is syn-
chronous.  In this context, that means that a quantity that flows from cell A to cell B does not 
then flow back from B into A during the same time-step.  All flows are calculated for each 
cell in turn, and then quantities in the soil as a whole are updated.  
 
convert-to-food  (Convert detritus to food) 
 
 For each cell:  
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  If detritus is present and enzyme is present then 
   The number of active enzymes is - 

   the enzymes present times an enzyme efficiency times - 
   the maximum detritus that can be converted divided by –  
   beta plus the amount of detritus present 
For each active enzyme and while food is available: 
 For the number of food units that an enzyme can convert: 
  Increase food in the cell by one food unit 
  Decrease detritus in the cell by one food unit 

     If detritus is negative, set to zero 
    Next food unit 
   Next active enzyme 
 Next cell 
 
This sub-model incorporates a commonly used model of the limitation of enzymatic activity 
on detritus.  Enzymes are able to convert a number of detritus units into food units that may 
be adjusted prior to a simulation.   
 
feed    (Microbes feed) 
 
 For each microbe: 
  Determine the food present, up to an adjustable maximum quantity of food 
  Calculate the energy of that food quantity 
  Increase energy of the microbe by the energy in the food, minus respiration 
  Decrease the food in the cell by the amount eaten 
  Increase an accumulator by the energy acquired 
  Increase an accumulator by the energy that is respired 
 Next microbe 
 
The amount of food that a microbe may consume is constrained to a maximum amount.  This 
reflects the handling time the microbe may have of food particles.  Respiration is a typical 
representation, where some proportion of energy acquired is lost to metabolic processes.  Ac-
cumulators are used to store the sum of quantities through the duration of the simulation, and 
are not involved in ecosystem processes. 
 
feed-predators   (Predators feed)      
 
 For each predator: 
  Determine the number of microbes in the cell the predator occupies 
  If there are microbes present then 
   Set the number of microbes to eat if it exceeds a maximum number of – 

   prey by randomly selecting the maximum number from those present 
   Increase energy of the predator by the accumulated energy of the – 

   microbes consumed, minus a portion used in respiration 
   Increase an accumulator storing the energy consumed and stored 
   Increase an accumulator storing the energy that was respired 
   Remove the microbes that were eaten 
  End if 
 Next predator 
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The number of microbes that predators may eat is limited, reflecting the handling time of the 
prey by the predator.  Predators accumulate the energy that is in the microbes they consume, 
so their feeding on ‘healthy’ microbes will yield more energy than feeding on emaciated mi-
crobes.  As elsewhere, accumulators store sums during each simulation, in case those quanti-
ties are of interest.  They do not play a role in ecosystem processes. 
 
mortality   (Mortality of microbes, energy depleted) 
 
 For each microbe: 
  If the energy of the microbe is less than zero then 
   Contribute some material to detritus representing the microbe carcass 
   Kill the microbe 
  End if 
 Next microbe 
 
If a microbe depletes its energy, which occurs when it moves about but cannot locate food, 
the microbe dies.  This causes a small quantity to be added to detritus of the cell that was oc-
cupied, representing the cell walls, etc. of the microbe. 
 
mortality-predators   (Mortality of predators, energy depleted) 
 
Mortality in predators is represented analogously to that in microbes, and so pseudo-code is 
not provided.  Predators have their own variable representing the quantity of detritus their 
death causes to be added to the detritus pool of the cell. 
 
reproduce   (Reproduce microbes) 
 
 For each microbe: 
  If the microbe has more energy than the threshold for reproduction then 
   Divide the energy of the microbe by two 
   Create a new microbe 
  End if 
 Next microbe 
 
Reproduction in the microbes is represented in a straightforward way.  If the microbe has suf-
ficient energy, it fissions into two identical microbes, each with half the energy of the original 
microbe. The division of energy in two prior to creating a new microbe reflects the method 
used in the modeling platform.  When a new individual is created by another individual (it’s 
parent), that individual inherits the properties of the parent.  Therefore, by setting the energy 
of a ‘parent’ to one-half its current energy, then having that parent spawn an offspring that has 
an equal amount of energy, we conclude with two identical organisms with the total energy 
divided between them. 
 
reproduce-predators (Reproduce predators) 
 
Predators reproduce in a manner analogous to microbes, and so pseudo-code is not shown.  
Predators have their own global variable representing the energy required to divide. 
 
decay-enzymes  (Allow enzymes to decay)  
 
 Calculate decay rate of enzymes as 0.50 divided by a parameter controlling half-life 
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 For each cell: 
  Increase an accumulator of enzymes that were lost by the enzyme present - 
     times the decay rate 
  Decrease enzyme in the cell by its quantity times 1 minus the decay rate 
 Next cell 
 
Enzymatic decay is represented in a straightforward way, once the decay rate is calculated.  In 
practice , a decay-half-life of 10 yields a rate of 0.5 / 10 or a decay rate  of  0.05.  A very short 
half-life such as 1 yields 0.5 / 1 and a rate of 0.5, and a very long half-life such as 1000 yields 
0.5 / 1000 and a rate of 0.0005. 
 
detritus-rain   (Rain detritus continuously) 
 
 Calculate the detritus added per patch, which in this case is the amount of detritus - 

   to be added per time step divided by the number of cells to receive detritus 
 For a randomly selected number of cells indicated by a global variable: 
  Increase detritus by the detritus to be added per cell 
  Increment an accumulator storing the total detritus added to the system 
 Next cell 
 
This sub-model represents continuous detritus contributions to a subset of cells that are select-
ed randomly each time step.  That number of cells is controlled by a global variable.   
 
detritus-period  (Rain detritus periodically) 
 
 Calculate the detritus added per patch, which in this case is the amount of detritus - 

   to be added per time step times the number of time steps defining the period - 
   divided by the number of cells to receive detritus 

 For a randomly selected number of cells indicated by a global variable: 
  Increase detritus by the detritus to be added per cells 
  Increment an accumulator storing the total detritus added to the system 
 Next cell 
 
This sub-model represents periodic detritus contributions to a subset of cells that are selected 
randomly each time step.  That number of cells is controlled by a global variable.  The simula-
tion uses the amount of detritus multiplied by the period to judge how much detritus should be 
added at the beginning of the period. 
 
detritus-root-continuous (Detritus from roots, continuously) 
 
 Calculate the detritus added per patch, which in this case is the amount of detritus - 

   to be added per time step divided by the number of root cells to receive detritus 
 If a cell is a root then 
  Increase detritus by the detritus to be added per cell 
  Increment an accumulator storing the total detritus added to the system 
 End if 
 
This sub-model represents continuous detritus contributions to the cells that are defined as 
roots.  Cells do not change their status as roots during a simulation. 
 
detritus-root-periodic (Detritus from roots, periodic) 
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 Calculate the detritus added per patch, which in this case is the amount of detritus - 

   to be added per time step times the number of time steps defining the period - 
   divided by the number of root cells receiving detritus 

 If a cell is a root then 
  Increase detritus by the detritus to be added per cells 
  Increment an accumulator storing the total detritus added to the system 
 End if 
 
This sub-model represents periodic detritus contributions to a subset of cells that are defined 
as roots.  The simulation uses the amount of detritus multiplied by the period to judge how 
much detritus should be added at the beginning each period.  The status of cells as root or 
non-root does not change during a simulation in the current model. 
 
get-clumpiness  (Calculate clumpiness index for roots) 
 
 Calculate the proportion of the cells in roots; call the result P1 
 For each cell that is a root: 
  For the four neighbors of the cell: 
   If the neighbor is a root, increment root touching root by one 
   If the neighbor is not a root, increment root touching non-root by one 
  Next neighbor 
 Next cell 
 
 Calculate as the number of root cells as neighbors divided by the number of -  
    root cells with roots or non-roots as neighbors; call the result G1 
 
 If G1 is greater than or equal to P1, calculate clumpiness as G1 minus P1 -  
    divided by 1 minus P1 
 If G1 is less than P1 and P1 is greater than 0.5, calculate clumpiness as G1 minus P1 -  
    divided by 1 minus P1 
 If G1 is less than P1 and P1 is less than 0.5, calculate clumpiness as P1 minus G1 -  
    divided by -1 times P1 
 
This sub-model calculates the class-level clumpiness index found in McGarigal et al. (2012), 
with roots as the focal class.  If roots were distributed more regularly than random, which is 
unlikely, the clumpiness metric would approach -1.  If the distribution of roots are random, 
the index would be about 0.  If there is clustering of the roots, the index approaches 1. 
 
draw-patches   (Update cell colors displayed for the environment) 
 
 Calculate mean values for detritus, food, and enzymes within the cells 
 Calculate standard deviations for detritus, food, and enzymes within the cells 
 Calculate the range (maximum minus minimum) for detritus, food, and enzymes 
 Calculate a stretching factor for detritus, food, and enzymes such that - 
    each is defined by the mean minus twice the standard deviation 
 For each cell 
  Calculate a color value for detritus, food, and enzymes based on - 
     value in cell minus the factor calculated divided by the range times - 
     the desired range 
  Trim the result to be between zero and the desired range 
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  Paint the display using the color values calculated 
 Next cell 
 
This sub-model is not used to represent soil biology, but rather updates the simulation display.  
An element on the simulation interface allows users to choose to show individual results for 
one of detritus, food, or enzymes, or a composite image.  In the composite, detritus amounts 
are shown in red, food in green, and enzymes in blue.   The algorithm described above is a 
typical stretching used by popular geographic software, using twice the standard deviation to 
identify low and high values of the linear stretch.   
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