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Individual-based model of the Konik horse population 

 
Model description 
Nika Galic    ngalic2@unl.edu 
 
The model description follows the ODD protocol for describing individual- and agent-based models 
(Grimm et al. 2006, Grimm et al. 2010). The ODD is for the model version 5 (“Koniks_v5.nlogo”.)  
 
Purpose 
 
The main purpose of the model is to explore how resource competition shapes individual life history 
and its feedback on dynamics of a horse population in a seasonal environment (De Roos et al. 2009). 
Specifically, the model investigates the link between prescribed growth in body size, population 
dynamics and density dependence through population feedback on available resources.  
 
The model parameters are based on the Konik horse population is Oostvaardersplassen in The 
Netherlands. This model version is non-spatial.  

 
Entities, state variables, and scales 
 
Entities in the model are individual horses and the environment. 
Individual state variables are age [days], structural mass [kg], fat mass [kg], gender/breed [foal, 
male, female], lifespan [days]. We also distinguish between gestating and lactating adult females. 
Pregnant females have the structural mass of the fetus [kg] as an additional state variable. Foals are 
horses up to 365 days of age. 

 
The environmental state variable is the resource, i.e. vegetation [kg], which has seasonal dynamics. 
 
Time is represented continuously, but the model implementation is based on discrete time steps – 
time steps can be modified by the user (time steps smaller than one day will result in more accurate, 
but much slower simulation). There are 365 days in a year. Simulations start on day 1 (April 1), 
corresponding roughly to the start of the vegetation season (in NW Europe), and go for 100 years or 
until there are no surviving individuals left. The output is evaluated only after 15 years to avoid 
transitional effects.  
 
The table with all parameters and their distributions is provided at the end of this document (Table 
1).  
The Konik population model is programmed within the NetLogo platform (Wilensky 1999). 
 
Process overview and scheduling 
 
The dynamics of the following state variables are described by ordinary differential equations, which 
are implemented as difference equations (Euler method): structural mass growth, fat mass dynamics 
and resource dynamics. Reproduction (both probability to become pregnant and birthing) and 
mortality (background and starvation) are discrete events.  
 
Every time step, the following processes are scheduled for all individuals in a randomized sequence 
for each process; state variables are updated at the end of the time step (asynchronous updating): 
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For each individual [  
 Aging (Increase age of individuals by designated time step) 
 
If  Background mortality  
       Delete from the population  
 
Else  - calculate changes in state variables 
 
Resource intake 
Structural mass growth 

- fetal growth in pregnant females 
  Lactation – only lactating females 
              Fat mass dynamics – Energy gains – Energy losses 
              Starvation mortality – Mortality if under starvation threshold 
            ] 
  
 Vegetation dynamics  
 
For each individual [  
               Update state variables 
            ]  
               Update vegetation 
 
For females > 3 years [  
               Reproduction – fixed probability to become pregnant, birth of foals 
                                            on 1st April  

 ] 
Update plots and output 
 
 

Design Concepts 
 

Basic principles. The model is based on basic rules for energy acquisition and allocation of energy to 
different metabolic processes in ungulate grazers in a seasonal environment (De Roos et al. 2009). The 
seasons are implemented as vegetation dynamics following seasonal growth representative of NW 
Europe.  

 
Emergence. Individual level state variables emerge from dynamics of metabolic processes and indirect 
competition for resources, whereas population dynamics and characteristics emerge from individual 
level characteristics.  

 
Sensing. The magnitude of resource acquisition, vegetation and milk production and consumption (for 
foals only), are regulated by the body condition of individuals, modeled as the fat-to-total-mass ratio. 
Individuals as assumed to “know” this condition. Those in good condition acquire half as much 
resources as starved individuals. Similarly, mares with foals in good condition produce less milk for 
them.  

 
Interaction. Individuals interact indirectly with each other through competition for resources. 
Lactating mares and their foals have a direct link with each other manifested in the amount of milk 
produced dependent on the foal’s fat-to-total-mass ratio. If the lactating female dies, its foal dies too.  
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Stochasticity. Mortality (background and starvation) and impregnation are stochastic events.  
 

Observation. We observe structural mass and fat mass dynamics of individuals of various ages in the 
population, fat-to-total mass ratio, population age distribution, population abundance, resource and 
milk intake of foals and vegetation dynamics. All the model output is plotted in daily time steps.  

 
 
Initialization 

 
Simulations start on day 1 (April 1), corresponding roughly to the start of the vegetation season (in 
NW Europe). The initial population is set to 500 three year-olds, with a maximum fat-to-total mass 
ratio (0.3). Approximately half of the individuals are non-pregnant and non-lactating females. The 
amount of resource is set to 103 tons which is below the minimum carrying capacity of the system.  

The following pseudo-code gives an overview of the initialization process 
      
     Initialize global parameters 
     Initialize resource 
     Initialize individuals [ 
                                      set gender  
           set age     
                                      set structural mass 
                        set fat mass        
                                      set lifespan  ] 
 

Input data 
 
The model does not include external input for environmental variables, i.e. there are no external 
drivers of system behavior such as temperature, rainfall etc. 
 
Submodels 
 
The population model includes the following submodels:  background mortality, resource intake, 
lactation, fat mass dynamics, starvation mortality, resource dynamics and reproduction. These are 
described in detail below.  
 
BACKGROUND MORTALITY 

 
Garrot and Taylor (1990) analyzed the survivorship of a feral horse population in Montana, USA and 
fitted a survivorship model based on individual age, a. Horses lived up to 24 years of age with a 
steady decrease in survival after 16 years of age.  
The Konik horses tend to live up to 30 years (Anonymous 2004) and we therefore adjusted Garrot 
and Taylor’s survivorship model to fit the Konik horse population  (Figure 1) 
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where μb is the background mortality parameter [d-1], αm is the horses’ modal age of senescence [d], 
and αs is the standard deviation in age of senescence [d].    

 
In the model, at initialization and birth each individual is assigned a random value between 0 and 1 
which fixes their lifespan. Individuals die when they reach the age at which the value of the 
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survivorship function is smaller than the randomly assigned number. Lactating females are directly 
linked to their foal’s survival and if such a female dies, her foal dies with her. 
 
This is covered in the backgroundMortality  procedure that is run each day in the simulation. 

 
Figure 1. Survivorship of the Konik horse population, as a function of horses’ age, a, [d]. 

 
RESOURCE INTAKE 
 

As grazers, Konik horses prefer feeding on dry grasslands, but also reed and dead herbs are grazed 
when the grasses are scarce (Vulink 2001).  
The intake rate I (V, S, F, W) scales allometrically with structural mass S, the amount of fat reserves F, 
total mass W and the amount of available resource V 
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Where α is the maximum intake rate [kg kg-3/4 d-1], and β is the half saturation constant [kg], i.e. the 
amount of vegetation at which the herbivores intake rate is half of the maximum size. 
We assumed that an individual horse only realizes its maximum intake rate if it’s fat-to-total 
mass is well below its maximum and that it feeds only half as much when its fat-to-total mass ratio is 
at its maximum. This process of satiation is governed by the last term in eq. 2. The more fat mass an 
individual has, the less its intake will be and vice versa. 
 The   in the last term is a scaling constant [kg-1] that controls the steepness of the intake rate. 

Pregnant females add the mass of their fetus to their total mass, W. The amount of resource 
consumed in a given time step is immediately subtracted from the total amount of available 
resource. 
This process is covered in the resourceIntake procedure in the model.  
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STRUCTURAL MASS GROWTH 
 
The total wet body mass W [kg] of an individual horse consists of structural mass S [kg] and fat mass 
F [kg] the latter amounts to a maximum of 30%  of the total body mass (Illius and O'Connor 2000), 
denoted as ρ [-]. 
 

FSW   where   WF  max             

 
The mares (3 years and older) are impregnated on ca. 1 May (day 30) with a fixed probability β 
(Anonymous 2004). Mares can lactate and be pregnant at the same time.  
 
The embryo starts to develop after a 57-day delay period τD [d] (Kooijman 2000).Gestation in equids 
is long, ranging from 330 to 390 days and we set the duration to a total of 335 days (Tischner and 
Klimczak 1989). 
 
Kooijman (2000) describes the structural growth of a fetus as 
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with ν as a conductance rate [cm d-1] for fetal structural body mass growth and τR the time [d] since 
start of pregnancy, i.e. the age of the fetus (Figure 2). 

 
Figure 2. Structural mass growth [kg] of a horse fetus as a function of age [d].  

 
Fetal mass is added to the total body mass of its mother. At the end of the gestation period, the 
foals are born on 1 April the following year and form a direct link with their mother. We assumed the 
same fat-to-total mass ratio for the foal at birth as its mother. The foal’s fat reserves are subtracted 
from its mother’s. Foals are born with a fixed structural mass (Tischner 1985, Tischner and Klimczak 
1989). 
 
After birth, individuals grow according to the von Bertalanffy growth (Kooijman 2000) 
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with an individual growth rate γ [d-1], maximum attainable structural mass Smax [kg] and structural 
mass at birth Sb [kg] (Figure 3).  

 
 
Figure 3. Horse structural mass growth [kg] as a function of age [d].  
 

Structural mass growth (fetal and non-fetal) is covered in structuralGrowth procedure in the model. 
 
LACTATION  
 
After giving birth, mares form a link with their foals and start producing milk for them. The lactating 
period is set to 12 full months of a foal’s age. If the mare has another foal after these 12 months, she 
continues to lactate, if not, the lactation is stopped.  
 
Foal’s milk intake depends on the amount of its current fat reserves that as modeled by the last term 
in eq. 5. When the foal has maximum fat mass (F=0.3W), its milk intake is halved. The same goes for 
the lactating mare; the production of milk decreases as the foal acquired more fat mass. The amount 
of daily milk production  

)(
1

),,,(
ff

fs

FW

a

mfff
e

e
WWFWaL












                                             Eq. 5 

 

depends on the maximum daily production rate λm [d-1] and declines with the rate λs [d
-1] as the foal 

gets older, af . According to Vulink (2001), the production declines to less than 1% of mare’s total 
mass in the last period of lactation. 
 
Foals have access to both milk and vegetation from their birth on, but the dynamics of milk 
production and the total mass of the foal determining the vegetation intake ensure that in the first 
months of their life, foals obtain more energy from mares’ milk.  
The milk production is stopped when either the mother or the foal dies or when the foal reaches one 
year of age.  
 
This process is covered in the lactation procedure in the model.  
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FAT RESERVE DYNAMICS 
 
                       Energy allocation 
 
Energy is acquired through the processes of milk intake (foals only, described in LACTATION) and 
through vegetation intake (described in RESOURCE INTAKE). 
 
Energetic requirements for metabolic maintenance include the amount of digestible energy for zero-
body-mass-change plus normal activity of a non-working horse. The basal metabolic rate BMR  
[MJ d-1] is a function of body mass W3/4 (Kleiber 1947, Reiss 1989)   
 

4/370 WBMR                                                                                                                      Eq. 6 
 

Allowing for some basic daily activities, the metabolic maintenance costs MC [MJ d-1] amount to 

 

BMRCM  2  
75.0)( WWC MM                                                                                                                  Eq. 7 

 
where σM is the metabolic cost constant [MJ kg-3/4 d-1] (Kleiber 1947, Reiss 1989, Flachowsky and 
Kirchgessner 1998). 
 
Daily energetic costs for structural tissue growth are proportional to the rate of change in structural 
mass (eq. 4), and increase with horses’ age (Anonymous 1989), following 
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with σG as the initial cost of structural tissue growth [MJ kg-1], and k as the rate of change in the 
energetic costs of growth [d-1] which increases with an individual’s age a. As the horses get older, 
daily increments in structural mass growth steadily become smaller resulting in very small growth 
costs in older individuals.  
 
Energetic costs for fetal development are paid by pregnant females and are proportional to the rate 
of change in fetal structural mass (eq. 3), with a fixed proportionality constant σG. 
 
The estimated energy requirement per kg milk production σL [MJ kg-1] (Anonymous 1989, Vulink 
2001) is paid by the lactating female (eq. 5), and the yield for an individual foal is converted to 
energy with a constant εM [MJ kg-1] (Mariani et al. 2001). 
 
To sum up, the following energy acquisition and allocation processes contribute to the fat reserve 
dynamics: 
 

1) IR - Intake of Resource  
2) IM - Intake of Milk –  foals only 
3) CM - Costs of metabolic Maintenance 
4) CG - Costs of structural Growth 
5) CP - Costs of fetal growth 
6) CL - Costs of Lactation 
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Dynamics of fat reserves of an individual equals the balance of listed energy acquisition and 
allocation processes (Figure 4): 
 

1) Foal fat reserve dynamics 
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2) Female fat reserve dynamics (one or two terms can be omitted depending on the status 
(pregnant and/or lactating) of the female) 
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3) Male (and non-pregnant and non-lactating females) fat reserve dynamics  
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Fat reserve dynamics may be anabolic ( 0
dt

dF
), in which case there is a surplus of energy which is 

then stored in fat tissue. Alternatively, reserves may be used to cover the energy requirements 

under conditions of resource scarcity, in which case reserve dynamics are catabolic ( 0
dt

dF
). The 

parameter  determines the conversion efficiency from reserves into energy [MJ kg-1], which is 

assumed different for anabolic ( a  ; Table 1) and catabolic reserves dynamics ( c  ; Table 1; 

(Baxter 1989, Illius and O'Connor 2000)) 
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Figure 4. Schematic overview of the individual energy budget. Energy acquisition processes are 
characterized by different intake rates I, while flows of energy allocation are characterized by different rates 
C. Solid black lines represent energy flows that occur in all type of individuals independent of their age and 

sex. Energy flows occurring only in foals ( MI ), pregnant ( PC ) or lactating females ( LC ) are indicated with 

grey dashed lines. 

 
The fat reserve dynamics are modeled with the reserveDynamics procedure.  

 
STARVATION MORTALITY 

 
Large ungulates are known to die of starvation when the environmental conditions are rough 
(Cederlund et al. 1991) and/or due to density-dependent causes (Clutton-Brock et al. 1997, Coulson 
et al. 2000, Clutton–Brock and Coulson 2002). Relatively high periodic mortality, typically at the end 
of the winter, has been observed repeatedly in large ungulate populations in the 
Oostvaardersplassen (Anonymous 2004).  
 
In the model, we assume that once the fat-to-total mass ration falls under a specified threshold, 
individuals’ probability of starvation mortality is increased 
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With a starvation mortality rate μS, that scales the severity of the starvation mortality [d-1]. Once 
their fat-to-total mass ratio fall below 0.1 (i.e. 10% of fat reserves left), denoted the parameter ρS [-], 
the individual has an increasing probability of dying due to starvation.  
 
If a lactating female dies of starvation, it is assumed the foal dies too. 
Starvation mortality is modeled with the starvationMortality procedure. 

Milk 

Resource 

M I 

R I 
T I 

T C 

T T C I  
Reserves 

Maintenance 
Structural 

mass growth 
Fetal 

development 
Lactation 

M C G C 
P C 

L C 

Milk 

Resource 

M I 

R I 
T I 

T C 

T T C I  
Fat reserves 

Maintenance 
Structural 

mass growth 
Fetal 

development 
Lactation Maintenance Maintenance 

Structural 
mass growth 

Structural 
mass growth 

Fetal 
development 

Fetal 
development 

Lactation Lactation 

M C G C 
P C 

L C 



10 

 

RESOURCE DYNAMICS 
 
The vegetation dynamics is assumed to follow the seasonal environment of NW Europe, where the 
onset of the growing season starts in early spring (Vulink 2001). As the model is inspired by the 
Oostvaardersplassen system in the Netherlands, we roughly modeled the dynamics of dry 
grasslands. The most common species growing on dry grasslands are: Cirsium arvense, Urtica dioica, 
Poa trivialis, Lolium perenne and Festuca rubra. In the model, different species are aggregated into 
accessible resource for horses. 
 
In the model, the resource follows semi-chemostat dynamics, with a re-growth rate r [d-1] and 
maximum resource density K [kg] in absence of herbivores (eq. 14), as a function of the day in the 
season τS [d] 
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The second term describes the amount of resource consumed by the horses, as a function of the 
resource density V, structural S, fat F and total mass W of the horses (described in RESOURCE 
INTAKE). The total grazing equals the sum of amount grazed by each horse, indexed by i. 
 
Seasonality in resource growth was implemented a sinusoidal function for the maximum resource 
density of the system K (Turchin and Hanski 1997, Van De Wolfshaar et al. 2006) (Eq. 4) 
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with a maximum Vmax [kg] and a minimum Vmin [kg] resource density within a season, and the time 
since the start of the growing season  τS [d] (Figure 5). Z represents the duration of the summer 
period and is set to 150 days and Y is a 365-day year. The shape of the sinusoidal function can be 
manipulated with Θ. If Θ is one, the shape of the vegetation growth is a pure sine function.  
 
The mean digestible energy content of the vegetation decreases during the season and we model it 
with an empirically established relationship (Vulink 2001)     
 

                                                                                                      Eq. 15 
 

 

where m  [MJ kg-1]and S [d-2] are conversion constants. The assimilation efficiency of ingested 

resource hence depends on the time since the start of the season, τS. 
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Figure 5. Maximum and minimum resource density [kg] in the whole system, in absence of grazers.  

 
Vegetation dynamics is modeled with the vegetation procedure. 
 
REPRODUCTION 
 
Large ungulates give birth in spring, typically between March and June (depending on the species) to 
one or two offspring (Tischner and Klimczak 1989, Clutton–Brock and Coulson 2002, Anonymous 
2004). 
 
We assumed a single offspring is born to a female after 335 days of gestation (Tischner and Klimczak 
1989). Foals are of undetermined gender and their fat-to-total mass ratio equals those of their 
mothers, as we assumed maternal effects (Walton and Hammond 1938, Tischner and Klimczak 
1989). The amount of fat mass transferred to foals is deducted from their mothers; all foals are born 
with a fixed structural mass (Tischner and Klimczak 1989).  
Mothers are directly linked to their foals and when a female dies (due to starvation or background 
mortality), we assume the foal cannot survive on its own and dies too. Once the foals turn one year, 
this link is deleted; foals become independent yearlings and are assigned a gender (1:1 ratio). 
 
For simplicity, we assume that all foals are born on the same day (April 1st). Also, females older than 
3 years have a fixed probability (Anonymous 2004) of being impregnated on the same day, 30 days 
after foaling (ca. May 1st in the modeled year). Females can be pregnant and lactating at the same 
time.  
 
Reproduction is modeled with the reproduction procedure. 
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Table 1: Model parameters. Sources: 1, Tischner and Klimczak (1989); 2, Vulink (2001); 3, Illius and O’Connor 
(2000); 4, Anonymous (2004); 5, Kooijman (2000); 6, Owen-Smith (2002); 7, calibrated; 8, Kleiber (1947), 
Reiss (1989), Flachowsky and Kirchgessner (1998); 9, Anonymous (1989); 10, Mariani et al. (2001); 11, Baxter 
(1989); 12, Garrot and Taylor (1990); 13, Turchin and Hanski (1997). 
 

Parameter Unit Value Description Ref. 

bS  kg 25.5 Structural mass at birth 1 

maxS  kg 280 Maximum structural mass 2 

  d-1 0.0023 Growth rate in structural mass 1 
  - 0.3 Target reserves mass as fraction of W 3 

  - 0.56 Fraction of females becoming pregnant 4 

D  d 57 Delay in start of fetal development 4,5 

 ν cm· d-1 0.32 Conductance constant 5 

  kg · 4/3kg · d-1 0.156 Scalar constant in maximum grazing rate 2 

  kg · ha-1 100 Half saturation constant in grazing rate 6 

  kg-1 15 Steepness in satiation scaling of intake rate 7 

M  MJ ·
4/3kg

· d-1 0.6 Scalar constant in metabolic costs 8 

G  MJ · kg-1 40 Initial/fetal cost of structural mass growth 9 

L  MJ · kg-1 3.31 Cost of milk production 2,9 

  d-1 0.0015 Rate of increase in growth costs 9 

m  d-1 0.03 Maximum milk production as fraction of W 2 

s  d-1 0.004 Rate of decline in milk production 2 

m  MJ·kg-1 1.9 Milk energy content  10 

a  MJ·kg-1 54.6 Anabolic reserves conversion efficiency  3,11 

c  MJ·kg-1 39.3 Catabolic reserves conversion efficiency  3,11 

b  d-1 3.86·10-5 Background daily mortality 4 

m  d 9855 Modal age of senescence 12 

s  d 912.5 Standard deviation in age of senescence 12 

s  d-1 0.012 Scalar constant in starvation mortality 7 

s  - 0.1 Reserves-mass ratio where starvation starts 7 

r  d-1 0.002 Resource regrowth rate 2 

maxV  kg·ha-1 6000·A Maximum summer resource density  2 

minV  kg·ha-1 2000·A Minimum winter resource density  2 

  - 0.3 Steepness in seasonality shift 13 

m  MJ·kg-1 10.7 Resource energy content at start of summer 2 

s  d-2 3.5·10-6 Rate of decline in resource energy content 2 

A ha 750 Total habitat area 4 

Z d 150 Summer duration 7 

Y d 365 Year length 7 
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Model variant – extreme weather 
 
To test the effects of extreme weather conditions, in the form of snow cover, on individual 
bioenergetics and population dynamics, we implemented a probability that snow cover will occur in 
a given year and the length of the snow cover period. Both are defined by the model user on GUI 
(snowProbability and snowCoverLength). 
 
During the snow cover period, there is no resource growth or resource intake by all grazing 
individuals in the population. All the baseline model processes are exactly the same as previously 
described. 
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