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In order to get more insight into the design of a cryptocurrency and its calibration, an agent-
based model is created. The goal of the model is to find a better way to design a cryptocurrency,
that allows for a high security and high wealth simultaneously in a pareto optimal fashion. In
the first, step a model was created that tries to simulate the real cryptocurrency Bitcoin. After
the model has been created, it will get calibrated and optimized which is described in section 4.
The model is based on an existing one by Cocco & Marchesi (2016), which was then adapted
and extended. The core features of the original model include a Bitcoin market, where agents
can sell and buy Bitcoin in a realistic fashion. Furthermore, agents are able to create (i.e. mine)
new Bitcoins. The full list of the features of the original model is:

• Three kinds of agents, including chartists, random traders/users and miners;

• A realistic order book to imitate a real cryptocurrency market;

• Agents join over time and decide to engage in the trade and or to mine Bitcoins;

• A power law wealth distribution for existing and later added agents;

• Miners are all in mining pools, meaning that they have a steady stream of income. They
also can decide at given time points to invest in or divest their hardware.

• A transaction system, allowing users to send a transaction and attaching a transaction fee.
It also has a capacity limit. All transaction fees of the transactions within this limit will
be distributed among the miners.

The inclusion of the transaction system allows to analyze the development of the transaction
fees as well as a better representation of the mining network hashing power. The model simu-
lates each day between February 23rd in 2014 and April 3rd 2018 in a single time step, totaling
1500 simulation steps.

1 Types of Agents

The model used in this thesis includes three types of agents: Chartists, users and miners. These
will be explained in the following sections in more detail.

1.1 Chartist

A chartist is an agent who trades for profit. S/he will place a buy order when s/he speculates
that prices will rise and a sell order otherwise. Every chartists has a time window T , that
has a mean of 20 and a standard deviation of 1. This approach has been firstly introduced by
Arifovic (2002). If the price increases in T was over the threshold of 0.01, s/he will place a
buy order and a sell order if otherwise. 10% of the chartists follow a contrary strategy, meaning
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the chartist will sell when the price increase is over 0.01 and buy if it is not the case. Every
chartists entering the market always places a buy order. This approach can also be found in
Raberto et al. (2003).

1.2 User

A user is an agent who participates in the market either for diversification of his portfolio and/or
for the usage of Bitcoin as a form of currency. S/he does not follow any trends with his/her
orders. In fact, the probability for sell and buy order is the same for a user at any given time.
Every user who is entering the market, issues a buy order. Since one of the reasons for his/her
participation in the market is the usage of Bitcoin as a currency, s/he also has the ability to
make a transaction at any given time step. Since the capacity of transactions per time step is
limited, s/he will always add a fee that allows the transaction to be picked up by miners. More
on transaction in section 2.2.

1.3 Miner

Miners are agents that participate in the model by generating new Bitcoins with their mining
hardware. They only participate in the market, if they require more cash in order to invest
or pay their electricity bills. At the beginning of the simulation, the total hash power of the
total Bitcoin network was 28,314 giga hash/s (GH/s). (Blockchain.com, 2019) These numbers,
as well as other following variables, have been divided by the factor of 5000. This was done
as to adjust all the model, so that it could be run within computational limits. This hash rate
was divided by the expected initial amount of miners (i.e. 9) to calculate the initial hashing
capability of one miner, resulting in a hashing capability of 0.00041 GH/s per Miner. The
hashing power of available hardware is getting cheaper over time, as the technology continues
to improve, whereas the power consumption per hashing capability is decreasing over time.
Cocco & Marchesi (2016) collected the average hashing power for the existing hardware with
corresponding prices and electricity consumption in the time frame between 2011 and 2015.
They estimated two curves through their aggregated data with the following forms:

R(t) = 8.635 · 104 · e0.006318·t

where R(t) is the average hash rate per US-Dollar with
H

s · $
.

P (t) = 4.649 · 10−7 · e−0.004055·t

where P (t) is the average electricity consumption per hash with
W

H/s
.

P (0) times the initial 0.00041 GH/s per Miner gives the initial electricity consumption per
miner with 1.10586 W. New miners entering the market as well as existing miners, who are able
to upgrade their hardware use these two equations to determine their new purchased hashing
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power ri,u(t) and its corresponding electricity consumption ei,u(t). The total hashing power of
a miner is consequently the sum of all his/her purchases or

ri(t) =
t∑

s=tEi

ri,u(t)

where tEi is the entry time of a given miner. The corresponding electricity consumption can be
expressed as:

ei(t) =
t∑

s=tEi

ε · P (s) · ri,u(s) · 24

where ε is the electricity price per W/h. It is fixed to 0.07 US$, which was the average during
the model time frame in China, where the majority of miners today are located. (CEIC, 2019)
The 24 refers to the hours of the day, since one time step in the model is a whole day. Miners
who are already in the model and make the decision to invest, use a fraction γ1,i(t) of their fiat
cash. Additionally, they will sell a fraction γi(t) of their Bitcoin and use the revenue as well.
Hence, the new purchased hardware will have a hashing power of:

ri,u(t > tEi ) = [γ1,i(t)ci(t) + γi(t)bi(t)p(t)]R(t)

where ci is the fiat cash and bi the Bitcoins held by Miner i and p(t) is the current Bitcoin price.
Miners entering the market will always make a purchase of mining hardware, this time only
using the fraction γ1,i(t) of their fiat cash. Hence, the hashing power of the initial bought
hardware for Miners is equal to:

ri,u(t = tEi > 0) = γ1,i(t)ci(t)R(t)

The values for γ1,i(t) and γi(t) are the same as in Cocco & Marchesi (2016) and both have a
log normal distribution. γ1,i(t) has a mean of 0.15 and a standard deviation of 0.15, whereas
γi(t) has a mean of 0.175 and a standard deviation of 0.15. Since Miners are not allowed to
take a credit, their γ are always set to 1 in case that γ > 1.

Miners are not able to purchase at any given time. Instead, they make a decision whether to
invest or divest on average every 60 days, which is another value taken from Cocco & Marchesi
(2016). This average has a normal distribution and a standard deviation of 6 days and the next
decision time step is determined by each individual miner every time an investment decision
has been made by him/her. Since by assumption all miners belong to a mining pool, their
generated revenue is proportional to their hashing power in comparison to the total networks
hashing power. The total daily Bitcoin income is the sum of the newly mined Bitcoins per day
plus the total sum of transaction fees within the transaction limit submitted at that time step,
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which can be expressed as:

bTot(t) = B(t) +
tlimit∑
j=1

fj(t)

where B(t) is the amount of Bitcoins mined per day and
∑tlimit

1 fj=1(t) is the total sum of the
highest fees within the transaction limit tlimit .
This revenue is now distributed among the miners in proportion to their hashing power.

bi(t) =
ri(t)

rTot(t)
bTot(t)

where rTot(t) is the networks total hashing power.
At any decision time step, every miner decides whether the revenue of the new hardware out-
weighs the connected costs. This constraint is expressed as follows:

ei,u(t) <
ri,u(t)

rTot(t)
bTot(t)p(t)

where ri,u(t) is the hashing power and ei,u(t) the electricity consumption of hardware u of

miner i. If s/he decided against the investment, s/he will issue a sell order equal to
γi(t)

2
bi(t) to

cover his/her electricity expenses.

Additionally, every miner is able to divest his/her hardware for the price of R(t). S/he will
do so, if the electricity expenses are 20% larger than the revenue associated with that specific
hardware. The constraint for divest is fulfilled if:

1.2ei,u(t) ≥
ri,u(t)

rTot(t)
bTot(t)p(t)

2 The Model

The model used in this thesis has two main components:

• A Bitcoin market which is similar to a real life cryptocurrency exchange, where traders
can place buy and sell orders.

• A transaction system, which allows users to send Bitcoins to other users and attach a
transaction fee to it.

The following sections will explain these components in greater detail.

2.1 The Bitcoin Market

The first main component of the model is the Bitcoin market. It is modeled after real life Bit-
coins exchanges or other trading exchanges in general. More specifically, an order book is
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created. This approach has also been used previously in Raberto et al. (2005) and Cocco &
Marchesi (2016).

Order Book
The order book keeps record of all the buy and sell orders with their respective amount in Bit-
coin, the remainder of the transaction for partial transactions, the corresponding limit prices
and the expiration time of an order. The following will explain these terms in more detail.
Buy Order: The amount of a buy order is proportional to the available fiat cash ci(t) of a trader
i. That excludes any fiat cash that is currently used in pending orders. The amount of a buy
order is defined as:

bα = ci(t) · β (1)

where β is a variable pulled from a log normal distribution with average 0.25 and standard
deviation of 0.2. In the case that β > 1, β is set to 1, since a trader is not able to take any credit.
Sell Order: Similar to equation 1 is the amount for a sell order determined.

sα = bi(t) · β (2)

β is the same as in equation 1. Short selling is also not possible.

Limit Prices: The limit price is a price at which a trader wishes to perform his/her order.
This mechanism works similar to a limit price from a real world exchange platform. A limit
price can also have a value of zero, in which case it is regarded as a market price, meaning that
a trader wishes to perform his/her order with the best available price. Each agent category has
their own probability to issue an order with a market price. 0.2 for users, 0.7 for chartists and
1 for miner. These numbers are chosen and picked by Cocco & Marchesi (2016), who argue,
that chartists and miner are the types of agent who have the greatest desire to trade at the best
price, chartists for profit and miners for liquidity reasons.
An agent is willing to perform his/her buy order only if the sell limit is below or equal to his/her
buy limit. The limit price for a buy order is given as:

buyi(t) = p(t) ·Ni(µ, σi) (3)

Similarly, an agent is only willing to perform his/her sell order if the buy limit is greater or
equal to his/her sell limit. The limit price for a sell order is given as:

selli(t) = p(t)/Ni(µ, σi) (4)

For both equations 3 and 4, p(t) is the current Bitcoin price and Ni(µ, σi) is a Gaussian dis-
tribution with a mean of 1.05. This distribution with this mean is supposed to represent limit
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prices, that are not fully rational. Additionally, agents are on average willing to pay a small
amount more than the market price would suggest. σi is supposed to represent the volatility of
the model. This approach has been used in Raberto et al. (2001). The standard deviation of the
Gaussian distribution is given by:

σi = Kσ(Ti) (5)

where K is a constant set to 2.5 and σ(Ti) is the standard deviation of the price in the time
window T which is set to 20. Furthermore, has σi the following constraint:

σmin = 0.003 ≤ σi ≤ 0.01 = σmax (6)

Expiration Time: Every order has an associated expiration time. It has the following form:

Expi = t+ pati (7)

where t is the simulation step of the order and pati is the patience of the ordering agent. It is
0 for chartists, meaning their order will expire if not performed in that time step. This is the
case since chartists wish to follow market trends. Users have a log normal distribution from
which they retrieve their patience for each time they issue an order. It has a mean of 3 and
a standard deviation of 1. Miners who always issue market price orders, have a patience of
infinite, meaning their order will stay in the market until it is executed.

Price Clearing
The price clearing mechanism used in this model is similar to the one from Raberto et al.
(2005).
In every simulation step, after all agents were able to issue their order, the order book is sorted
in respect to the limit prices. For buy order, the list is sorted in descending order, and for sell
order in ascending order. The model now compares the two top orders from the buy and the
sell order list. A match occurs if at least one of the following condition is fulfilled:

buyi(t) ≥ sellj(t) (8)

sellj(t) = 0

buyi(t) = 0

where buyi(t) is the limit price of the buy order and sellj(t) is the limit price of the sell order.
Paraphrased, this means that either the buy limit price needs to be greater or equal to the sell
limit price and/or at least one of the order is a market price order.
In case that the amount of Bitcoins in the buy and sell order does not match, the order with
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the smaller amount is fully executed. The fully executed order will be removed from the order
book and the non-fully executed one will remain with the remainder of that transaction. This
process will be repeated until the top two orders of the order book do not match anymore. After
the last match has occurred, all expired orders will be removed.
Price Formation: the price for a matched transaction pT is formed by the following four rules:
1. If buyi(t) > 0 and sellj(t) > 0:

pT =
buyi(t) + sellj(t)

2

2. If buyi(t) = 0 and sellj(t) > 0:

pT = max(sellj(t), p(t))

3. If buyi(t) > 0 and sellj(t) = 0:

pT = min(buyi(t), p(t))

4. If buyi(t) = 0 and sellj(t) = 0:
pT = p(t)

where p(t) is the current Bitcoin price. Every time pT has been determined, it is henceforth
used as the new p(t).

2.2 The Transaction System

The second main component of the model is the transaction system. It aims to replicate the
occurrence of transactions fees in the real Bitcoin network.
The transaction system in this model is essentially a list of all transactions that have been broad-
casted by the user agents. It is always sorted in descending order by the fees fi. As the real
Bitcoin protocol, the model has a transaction limit called tlimit. Only transactions which are
within tlimit are able to be executed in that simulation time step.
In every simulation step, a user agent has a fixed probability of 20% to make a transfer. All
other transactions are considered to happen over a Bitcoin exchange which therefore are not
appended to the transaction system of the Bitcoin network. The amount a user sends within a
single transaction is determined by a normal distribution with an average of 143 $ and a stan-
dard deviation of 20. The value of this mean was taken from the median of the transaction
volume of all transaction in the modeled time frame. (BitInfoCharts, 2019) Even though all
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the transaction fees are expressed in US-Dollar, the model internally uses the corresponding
amount of Bitcoin. The recipient of the transaction is randomly chosen from the pool of users.
Fee determination: A user will attach a fee to his transaction based on the length of the trans-
action list L(t) and the following rules:

1. If L(t) ≥ tlimit : fi = (flast(t) + α) ·N(µ, σ) (9)

2. If L(t) < tlimit : fi = (flast(t)− α) ·N(µ, σ) (10)

3. If L(t) = 0 : fi = (flast(t− 1)− α) ·N(µ, σ) (11)

where N(µ, σ) is a normal distribution with the mean of 1 and standard deviation of 0.01.
flast(t) is the fee of the last transaction of this time step still within tlimit, whereas flast(t− 1)

was the last fee within tlimit of the last time step. α is a constant set to 0.01$. As mentioned,
all transactions have their fees attached in Bitcoin, however a transaction also holds the infor-
mation of a fee expressed in US-Dollar, which is actually the information used for flast(t).
As by Bitcoin protocol design, a fee is always required. The hard coded absolute minimum fee
for a transaction is set to 1 · 10−8 Bitcoin. Therefore:

For
fi
p(t)

< 10−8 : fi =
p(t)

108
(12)

As with orders, transaction have an expiration date, which is set to:

Expi = t+ pati (13)

where t is the current simulation step and pati is a log normal distribution with a mean of 1 and
standard deviation of 0.01.
At the end of every time step, all transactions within tlimit are executed. The recipient receives
his/her designated amount. The total sum of all fees within tlimit will be distributed among
all miners in proportion to their hashing power. All executed and expired transactions will be
removed, all other transactions remain in the list, still in sorted order for the next time step.

3 Initialization

3.1 Agent Distribution and Type

The amount of agents entering the model at any simulation time step is determined by a generic
exponential function, which was taken from Cocco et al. (2017). The authors estimated the
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amount of participants in the Bitcoin network based on observations over time. The amount
was slightly adapted to fit with the time frame used in this model and has the following form:

N(t) = 1.77 · 104 · exp(0.002465 · (t+ 1878)) (14)

where N(t) is the total amount of agents at simulation step t.

There is little data available for the distribution of the kind of participants in the Bitcoin net-
work. As for 2019, there were nearly 35 million Bitcoin wallet users. (Statista, 2019) It is
estimated that the current amount of miners in Bitcoin is around one million. (Buybitcoin-
worldwide, 2019) Therefore, the probability for an agent at any time step to be a miner pM(t)

is set to 0.025.
Cocco & Marchesi (2016) stipulated that of all the agents which are not miners, 70% are users
(in their paper generally referred to as a random trader) and 30% are chartists. Therefore, there
are the following percentages for the three different agent types:

Table 1: Agent Type Probability
Agent Type Probability

Miner 2.5%
User 68.25%

Chartist 29.25%

3.2 Agent’s Wealth

The wealth distribution of the agents is following a power law distribution. This approach has
also been used in Cocco & Marchesi (2016) and Raberto et al. (2003). A power law has the
general form of:

p(x) =
C

xα
(Newman, 2005)

Rewritten for the purpose of this thesis, it has the following form:

bi(t
E
i = 0) =

bmax
iα

(15)

where bi(tEi = 0) are the initial Bitcoins of initial agent i, bmax the Bitcoins of the wealthiest
agent and α is a constant for the power law. The total amount of Bitcoins for t = 0 is equal to:

B(0) =

n0∑
i=0

bmax
iα

=

n0∑
i=0

bi(t
E
i = 0) (16)

where n0 is the initial amount of agents.
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Equation 15 is used several times. Once for the Bitcoins of the agents at the beginning of the
simulation. Here, α is set to 1.
bmax is calculated by solving equation 16 for bmax withB(0) set to 60% of the actual amount of
the day at the beginning of the simulation, since like in Cocco & Marchesi (2016), it is assumed
that only 60% of the Bitcoins are in circulation. n0 was retrieved from equation 14. This gives
a bmax of 1,156,094 Bitcoins, which is then divided by the computational factor of 5000.
The second time it was used to calculate the cash for the initial agents with the same alpha and
a maximum cash of 20,587. The last time the equation was used, was for the cash of all the
agents which are entering at a later point. For that purpose α was set to 0.6 and the cash of the
richest trader was set 10 times higher as the cash from the richest initial trader. Their initial
Bitcoins are zero. For the agents who entered later on, a pool of cash values was generated with
the size of the total amount of agents entering during the whole simulation process. A value
was then pulled each time a new agent entered. This approach and the parameters used are all
similar to Cocco & Marchesi (2016).

4 Calibration

This thesis aims to analyze optimal design possibilities of a cryptocurrency. For that reason, the
two parameter, the transaction limit tlimit and the block mining reward or generation B(0),
were picked. These two variables were chosen, because both of these are part of the original
protocol of Bitcoin and were never really justified by their creator Satoshi Nakamoto. Addi-
tionally, these two variables can be adjusted comparatively easily, by a new consensus of all
Bitcoin users, implementing a hard fork. The following sections will describe the three differ-
ent calibration approaches of this thesis.

4.1 Realistic Parameters

The first calibration process involved using the real Bitcoin parameters to have a baseline value
to compare the other calibration processes against. As described in section ??, the current
Bitcoin block has a size limit of 1 MB. Since an average transaction has a size of 250 bytes,
this results in a block transaction size limit of 4000. As the model simulates on a daily basis,
this number is multiplied by 144 (6 blocks per hour and 24 hours a day). Afterwards, it is
divided by the computational factor of 5000. Therefore, tlimit is set to 115 for this calibration.
The amount of Bitcoins mined per block was already described in section ??. As described,
the block mining reward halves every 210,000 blocks, which equals approximately 4 years.
Therefore, the mining reward does not stay the same during the whole simulation. Table 2
shows the values used for the mining reward during the simulation runs.
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Table 2: Daily Mining Reward in Simulation
Date Real Bitcoin Reward Simulated Bitcoin Reward

2014.02.23 - 2014.11.11 3600 0.72
2014.11.12 - 2018.04.03 1800 0.36

4.2 Optimization for Wealth

The second calibration step is the optimization for wealth in the model. This optimization
objective is similar to the one from Chiu & Koeppl (2017). In their paper, Chiu & Koeppl used
a theoretical model to optimize the welfare of a market which uses Bitcoin as a currency. They
defined welfare as the aggregated surplus of the market minus the expenditures, i.e. the mining
costs. The aim of this optimization process is now to verify their findings, which are that the
optimal calibration of a blockchain to maximize the welfare is a low mining block reward and
no transaction fees. This thesis uses a similar welfare function, which is equal to the overall
wealth and it is defined as:

Wtot(t) =
n∑
i=1

bi(t) · p(t) + ci(t) +
rtot(t)

R(t)
(17)

where bi(t) are agent i’s Bitcoins, ci(t) his fiat cash, p(t) the Bitcoin price at time t and
rtot(t)

R(t)
the current worth of the miners’ hardware in US-Dollar.

Since the relation between the parameters and the wealth is not known and might not be linear,
a brute force approach would be very computation-intensive and therefore unfeasible. Instead,
a multi-objective evolutionary algorithm (MOEA) is used to maximize the wealth. This ap-
proach has been used for multi-objective optimization of agent-based model before by Narzisi
et al. (2006) and is still used in this case here with only one objective due to its very efficient
nature.
The genetic algorithm used in this thesis is called Non-dominated Sorting Genetic Algorithm
II (NSGA-II) and will be briefly explained in the following:
Generally NSGA-II, just like any other MOEA minimizes f with m objectives and the follow-
ing form:

Minimize: f(s) = (f1(s), ...fm(s)) (18)

Subject to: sl < s < su

where s is a vector of optimization variables with the lower and upper limit of sl and su. (Seah
et al., 2012) A solution si dominates solution sj if the following conditions are fulfilled: 1. si
is better or equal in all objectives as sj . 2. si is better than sj in at least one objective. Thus, a
solution that is not dominated by any other solution is called non-dominated.
Just like most other genetic algorithm, NSGA-II starts by picking a random set of parameters
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(their genetic code here) and uses the outcomes for the creation of a new generation, that is
a new set of parameters. The new offspring is created using mutation and crossover includ-
ing a tournament selection to determine which parameters to use for the crossing. NSGA-II
has the following special features: First off all, it follows an elitist principle, i.e. some of the
best performing populations will be used in the following generation. Secondly, for the fitness
evaluation, all results are sorted into classes of pareto-fronts, that is by how many other pop-
ulations they are being dominated. For populations of the same front, a crowding distance is
used which tries to diversify the offspring and prefers results that are further away from other
solutions (in terms of their euclidean distance of their parameters to that of other). (Calle, 2017)

To make the optimization process feasible, some compromises have to be made. First of all, the
NSGA-II have been restricted to 1000 simulation steps. Additionally, a number of runs for the
Monte Carlo simulation has been picked, that allows for a robust mean, but could decrease the
overall computational time. This approach has also been used in Narzisi et al. (2006). Table 3
shows the average for both the wealth and the overall hashing power, as the latter will be used
in the last calibration process. 25 runs were used for the NSGA-II, as the average wealth and
hashing power appeared to sufficiently stabilize at that amount of Monte Carlo runs.

Table 3: Model’s stochasticity per amount of Monte Carlo Runs
No. of Monte Carlo Runs Average Wealth Average Hashing Power

1 14794 13,277,608
5 13476 11,885,676

25 12672 11,073,409
50 12904 11,168,782
100 12795 11,047,399

The meta-parameters for the NSGA-II in this calibration are listed in table 4.

Table 4: Meta-Parameters for NSGA-II of Wealth Optimization
Objective Maximize: Wtot(t)
Bl(t) 0
Bu(t) 36,000
tlimitl 0
tlimitu 8,050
No. of Monte Carlo Runs 25
No. of Simulation Steps per Run 1000
No. of population 20
No. of generations 20
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4.3 Optimization for Wealth and Hashing Power

The last calibration step is the optimization for wealth and hashing power. The optimization of
a cryptocurrency just for the overall wealth might be not a feasible solution, since the network’s
security is neglected. In the case of Bitcoin and similar cryptocurrencies, relies the network’s
security completely on its hashing power. (Pagnotta, 2018) It is therefore a vital aspect of
the design and should also given a high degree of attention. The network’s hashing power,
introduced in section 1.3, is defined as:

rtot(t) =

j∑
i=1

ri(t) (19)

where ri(t) is the hashing power of miner i and j is the amount of all miners at t. This time
the NSGA-II algorithm optimizes for two objectives, which is the maximization of Wtot(t) and
rtot(t), where wealth and NSGA-II both have been introduced in the previous section. The
optimization in this step will not return one optimal value, but instead an optimal pareto-front
of values, that are all non-dominated by each other. This is expected to result in a function that
represents the trade-off between wealth and hashing power of a cryptocurrency network. The
final parameters for the NSGA-II are the following:

Table 5: Meta-Parameters for SNAG of Wealth and Hashing Power Optimization

Objective Maximize: Wtot(t)
Maximize: rtot(t)

Bl(t) 0
Bu(t) 36,000
tlimitl 0
tlimitu 8050
No. of Monte Carlo Runs 25
No. of Simulation Steps per Run 1000
No. of population 40
No. of generations 20
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