
FLOSSSim ODD

Nicholas P. Radtke
Nicholas.Radtke@asu.edu

December 17, 2011

The model description follows the ODD (Overview, Design concepts,
Details) protocol for describing individual- and agent-based models [1, 2].

1 Purpose

The purpose of FLOSSSim is to gain a better understanding of the Free/Libre
Open Source Software (FLOSS) development process through simulation. In
particular, the goals of this model are to:

• Demonstrate that it possible to develop an empirically-grounded agent-
based model that can explain historical patterns present in the FLOSS
ecosystem.

• Gain insight into components of the FLOSS development process, such
as how developers select projects and why some projects are successful.

• Explore what it means for a project to be successful in the FLOSS
domain.

• Demonstrate that with sufficient calibration, modeling can be used to
accurately predict components of the FLOSS ecosystem.

2 Entities, State Variables, and Scales

The model universe consists of two types of entities: agents and FLOSS
projects.

Table 1 contains the state variables of agents. Table 2 contains the state
variables of projects.

1



Table 1: Agent state variables.
Property Description Type/Range
Consumer number Propensity of an agent to

consume (use) FLOSS.
R [0.0, 1.0]

Producer number Propensity of an agent to
contribute to FLOSS.

R [0.0, 1.0]

Needs vector A vector representing the
interests of the agent.

Each scalar in
vector is R [0.0, 1.0]

Resources number A value representing the
amount of work an agent
can put into FLOSS
projects on a weekly basis.
A value of 1.0 represents 40
hours.

R [0.0, 1.5]

Memory A list of projects the agent
knows exist.

The model’s performance is evaluated after 250 time steps, with a time
step t equal to one week, resulting in a simulated period of just under five
years.

3 Process Overview and Scheduling

Time is modeled as discrete steps with a weekly resolution. Projects are
updated synchronously (i.e., new project values are temporarily stored until
all agents have completed their tasks and then all projects are updated at
once).

Pseudocode outlining the model’s schedule is provided in Fig. 1.

4 Design Concepts

Emergence: The emergence of several aggregate-level patterns are used
for validation purposes by comparing the model’s output to empirical
data. The patterns considered are: distribution of projects in devel-
opment stages [3], number of developers per FLOSS project [3], and
number of FLOSS projects per developer [4]. In addition, the model
is able to reproduce a projects’ downloads distribution that is similar
to empirical data.

2



Table 2: Project state variables.
Property Description Type/Range
Current resources The amount of resources

or work being contributed
to the project during the
current time interval.

R

Cumulative
resources

The sum, over time
increments, of all
resources contributed to
the project.

R

Resources for
completion

The total number of
resources required to
complete the project.

R [0.0,
maxResources]

Download count The number of times the
project has been
downloaded.

N0

Maturity Six ordered stages a
project progresses
through from creation to
completion.

{planning,
pre-alpha, alpha,
beta,
production/stable,
mature}

Needs vector An evolving vector
representing the interests
of the developers involved
in the project.

Each scalar in
vector is R [0.0, 1.0]

Projects accumulate resources from agents’ contributions. Success-
ful projects emerge based on the amount of contributions received,
frequency of contributions, etc. Different definitions of success are
explored.

Adaptation: Agents use probabilistic choice when selecting projects to con-
tribute to or to download, based on the calculated utility of each
project contained in an agent’s memory. As memory changes over
time, agents gain and lose access to projects, which subsequently af-
fects an agent’s choice of projects. Selection is modeled through a
multinominal logit equation resulting in imperfect choice, meaning
agents do not always select the project with the highest perceived
utility.

3



create projects
create agents
week t = 0
while (t < 250)

for i from 1 to number of agents
update agent[i] memory
if agent[i] is consuming

pick projects to consume
download selected projects

if agent[i] is producing
pick projects to produce
contribute resources to selected projects

for j from 1 to number of projects
update project[j] state variables

add new projects
t = t + 1

Figure 1: FLOSSSim schedule.

Objectives: Agents calculate a perceived utility of each project based on
properties of the project and properties of the agent. When contribut-
ing to or downloading a project, agents select projects with high util-
ities with a higher probability.

Learning: The utility of a project to an agent increases if the agent worked
on the project in the previous time step, simulating the ease of contin-
uing to work on a familiar project versus the cost of learning to work
on a new unfamiliar project.

Sensing: Agents know the maturity, current resources, cumulative resources,
download count, and needs vector of all projects currently in the
agent’s memory.

Interaction: Agents interact with projects by either downloading or con-
tributing resources to a project. Agents are only able to interact with
projects contained in the agent’s memory.

There is no explicit formulation of communication between agents in-
cluded in the model; implicitly it is assumed that agents share infor-
mation about other projects and thus agents know characteristics of
projects they are not currently consuming/producing. Agents are also
able to discover new projects, adding them to their memory, based on
this assumption.

4



Projects are assumed to be completely independent of one another;
there are no explicitly modeled links between projects.

Stochasticity: Agents’ state variables and projects’ resources for comple-
tion, cumulative resources, and needs vectors are initialized via pseudo-
random number generators.

Agents discovering and forgetting projects is a stochastic process.
Likewise, the process of agents choosing projects includes probabilistic
selection.

Observation: Data from projects is collected and aggregated following the
termination of a simulation run. Data collected includes project ma-
turity, number of developers per project, number of projects per de-
veloper, number of downloads, number of agents with interests similar
to the project, and project state variables. Output data are dumped
to a file for later analysis.

5 Initialization

At time t = 0, the model is seeded with 389 agents and 1024 projects.
The initialization values included in this section, unless explicitly stated

otherwise, were determined by using genetic algorithms to find well-performing
values.

Agents’ state variables are initialized as follows: The consumer number
is generated from a normal distribution pseudo-random number generator
with µ = 0.78 and σ = 0.68 truncated to be in the range [0.0, 1.0]. The
producer number is generated from a normal distribution with µ = 0.91 and
σ = 0.04 truncated to be in the range [0.0, 1.0]. The needs vector length
is three and each element is generated from a uniform distribution in the
range [0.0, 1.0]. Resources numbers are normalized to a 40 hour work week
and are generated and assigned to agents based on the distribution found
in a survey[4] that inquired how long developers spend working on FLOSS
projects per week, as shown in Fig. 2. Within each discrete category (e.g.,
<2 hours, 2–5 hours) resources are assigned uniformly. An agent’s memory
is seeded with five projects, where each project in the entire population of
projects has an equal probability of being one of the five selected.

Projects’ state variables are initialized as follows: Projects vary ran-
domly in the amount of resources that will be required to complete them
based on an exponential distribution, resulting in many small projects and

5



Figure 2: Resources number distribution based on weekly time spent de-
veloping FLOSS. Agents’ resources numbers are generated based on the
distribution found in [4].

few large projects. Specifically, a project’s resources for completion is gen-
erated as shown in (1):

resourcesForCompletion = maxResources · PexpPRNG (1)
where

maxResources defines the resources required to complete the largest
possible project in the model (i.e. defines the upperbound size of
projects)

PexpPRNG is a truncated pseudo-random number generator based
on the negative exponential distribution λe−λx where λ = 5 and
bounded by the range [0.0, 1.0]

maxResources is set to 10,000, meaning that the largest possible project
that could be created in a simulation run would take 10,000 40 hour work
weeks to complete, the equivalent of 48 people working full time on a project
for 4 years.

Not all FLOSS projects start from scratch as open source. Many projects
are first partially developed and then released under an open source license.
The development stage of projects when first added to SourceForge, as mined
from the FLOSSmole database, is shown in Table 3. When creating projects,

6



Table 3: Development stage of projects when first added to SourceForge,
based on data mined from the FLOSSmole database (see [5]).

Initial Development
Stage on SourceForge

Percent of Projects

planning 26.1%
pre-alpha 16.6%
alpha 18.1%
beta 22.4%
production/stable 15.6%
mature 1.2%

the cumulative resources and maturity are generated according to this dis-
tribution. The cumulative resources is set to the bottom threshold of each
development stage, i.e., if a project is created in the alpha stage, then the
cumulative resources is set to 25% of the resources for completion because
11% and 14% of the resources are contributed in the planning and pre-alpha
stages respectively (see Fig. 3).

The project needs vector length is three and each element is generated
from a uniform pseudo-random number generator in the range [0.0, 1.0]. A
project’s current resources and downloads state variables are always initial-
ized to zero.

6 Input

The model does not use input data to represent time-varying processes.

7 Submodels

7.1 Updating Agents’ Memory

There is no explicit formulation of communication between agents included
in the model; implicitly it is assumed that agents share information about
other projects and thus agents know characteristics of projects they are not
currently consuming/producing. At each time step, agents update their
memory. With a probability of 0.065 an agent will be informed of a project
and add it to its memory, simulating discovering new projects. Likewise,
with a probability of 0.065 an agent will remove a project from its mem-
ory, simulating forgetting about or losing interest in old projects. These

7



probabilities were determined using evolutionary computation to find well-
performing values. Thus, over time an agent’s memory may expand and
contract.

7.2 Agents Selecting Projects

At each time step, agents choose to produce (i.e. develop) or consume (i.e.
download) projects based on their producer and consumer numbers, values
between 0.0 and 1.0 that represent probabilities that an agent will produce
or consume. Producer and consumer numbers are statically assigned when
agents are created and are drawn from a normal distribution (see Section 5).

All agents have memory which contains a subset of all available projects,
and if producing or consuming, an agent calculates a utility score for each
project in its memory. The utility function is shown in (2):

U = w1 · similarity(agentNeeds, projectNeeds)
+w2 · currentResourcesnorm

+w3 · cumulativeResourcesnorm (2)
+w4 · downloadsnorm

+w5 · f(maturity)

Each term in the utility function represents a factor that attracts agents
to a project, where w1 through w5 are weights that control the importance
of each factor, with 0.0 ≤ w1, w2, w3, w4, w5 ≤ 1.0 and

∑5
i=1 wi = 1.0 .

Factors in the utility function were selected based on both FLOSS literature
and a personal understanding of the FLOSS development process. Keeping
it simple, a linear utility equation is used for this version of the model. The
first term represents the similarity between the interests of an agent and the
direction of a project; it is calculated using cosine similarity between the
agent’s and project’s needs vectors. The second term captures the current
popularity of the project with developers and the third term the size of
the project implemented so far. The fourth term captures the popularity
of a project with consumers based on the cumulative number of downloads
a project has received. The fifth term captures the maturity stage of the
project. Values with the subscript “norm” have been normalized by dividing
each project’s value by the maximum value over all projects. For example,
downloadsnormi is the ith project’s download count divided by the maximum

8



number of downloads that any project has received, as shown in (3):

downloadsnormi =
downloadsi

max(downloads1, downloads2, . . . , downloadsnumOfProjs)
(3)

where
downloadsi represents the number of downloads of the ith project

The discreet function f maps each of the six development stages into a
value between 0.0 and 1.0, corresponding to the importance of each develop-
ment stage in attracting developers. The number of new developers that join
a project during each stage is used as a proxy to estimate the importance
of each stage in attracting new developers. Using empirical data collected
from the FLOSSmole database [5] and through the use of CVSAnalY2 [6],
the number of new developers in each development stage was counted for 76
projects that had progressed through four or more development stages; the
discovered normalized average importance of each stage is shown in (4).

f(x) =





0.62 if x = planning,
0.47 if x = pre-alpha,
0.27 if x = alpha,

0.23 if x = beta,

0.23 if x = production/stable,
0.0 if x = mature

where x ∈ {planning, pre-alpha, alpha, beta, production/stable, mature}
(4)

Evolutionary computation is used to determine combinations of the util-
ity weights w1–w5 that perform well, which in turn provides information
about the importance of each of the factors. Multiple clusters of weights
that allow the model to match empirical data are found.

Since all terms in the utility function are normalized, the utility score
is always a value between 0.0 and 1.0. In addition, the square root of the
utility is used instead of U when calculating the utility for projects an agent
developed for or downloaded in the previous time step, representing the
added utility of continuing to work on the same project due to increased
familiarity with the project.

Both consumers and producers use the same utility function. This is
logical, as most FLOSS developers are also users of FLOSS [7, 8].

9



Agents use utility scores in combination with a multinominal logit equa-
tion to probabilistically select projects. The probability of selecting the ith
project is shown in (5):

Pi =
eµ∗Ui

∑numOfProjs
k=1 eµ∗Uk

(5)

where
Pi is the probability of selecting the ith project
Ui is the utility of the ith project
{µ ∈ R|µ ≥ 0} adjusts the level of perfect choice

The multinominal logit allows for imperfect choice, i.e., not always selecting
the projects with the highest utility, and may be adjusted by changing the
parameter µ. When µ is 0, all projects are chosen with equal probability
regardless of each project’s utility. The larger the value of µ, the greater
the chance an agent will select the “best” project, that is the project with
the highest utility. In the model µ is assigned the relatively high value of
36 (determined via the use of genetic algorithms to find a well-performing
value), a value that causes agents to make well-informed decisions.

Agents are limited to producing or consuming up to a maximum number
of projects at each time step. When an agent is producing, the number of
projects the agent is engaged in is generated from an exponential distribution
with an upper cutoff, as shown in (6):

numProducing = maxNumProducing · PexpPRNG (6)
where

maxNumProducing defines the upper limit for the number of
projects an agent can develop for in a single time step

PexpPRNG is a truncated pseudo-random number generator based
on the negative exponential distribution λe−λx where λ = 5 and
bounded by the range [0.0, 1.0]

By using an exponential distribution, agents will frequently be involved with
a small number of projects and only occasionally develop many projects.
Developer surveys have confirmed that the majority of developers work on
only one or a few projects [9, 4] and the minority engage in many projects
simultaneously [4, 10]. maxNumProducing is assigned a value of 12 based
on the results of using evolutionary computation to find a well-performing
value.

10



A truncated normal distribution is used when agents consume, as it is
assumed that most FLOSS users use a similar number of projects and are
not subject to the larger time dedication required when developers become
involved in a project. Each time an agent chooses to consume, the number
of projects downloaded is determined by equation (7):

numConsuming = maxNumConsuming · PnormPRNG (7)
where

maxNumConsuming defines the upper limit for the number of
projects an agent can download in a single time step

PnormPRNG is a truncated pseudo-random number generator based
on a normal distribution with µ = 0.5 and σ = 1/6 and bounded
by the range [0.0, 1.0]

maxNumConsuming is assigned a value of 3 based on the results of using
evolutionary computation to find a well-performing value.

When producing, agents contribute their entire resources number to the
project(s) they selected. If contributing to multiple projects during a single
time step, an agent’s resources are distributed directly proportionally to the
utility score calculated for each project. When consuming, the downloads
count of each selected project is incremented.

7.3 Updating Projects

Project state variables are updated asynchronously. That is, agents evaluate
projects based on their state variable values at time t − 1. Contributions
made to projects at time t are stored in temporary variables and then copied
to the project state variables after all agents have completed evaluating,
contributing to, and downloading projects.

Projects update their needs vector at each iteration using a decaying
equation, as shown in (8).

pneedsi,t =
ε ∗ pneedsi,t−1 (8a)

+
1− ε

resourcesi,t
∗

numOfAgents∑

l=1

(cl,i,t ∗ aneedsl) (8b)

where
pneedsi,t is the ith project’s needs vector at time step t
pneedsi,t−1 is the ith project’s needs vector at time step (t− 1)

11



{ε ∈ R|0.0 ≤ ε ≤ 1.0}
cl,i,t is the lth agent’s contribution to the ith project at time step t
aneedsl is the lth agent’s needs vector
resourcesi,t =

∑numOfAgents
l=1 cl,i,t

The ith project’s vector at time t, pneedsi,t, is partially based on the
project’s needs vector at time t − 1 (8a) and partially on the needs vec-
tors of the agents currently contributing to the project (8b). The rate of
decay is controlled by ε. An agent’s influence on the project’s needs vector
is directly proportional to the amount of work the agent is contributing to
the project with respect to other agents working on the same project at
time t. This represents the direction of a project being influenced by the
developers working on it, with core developers having a larger influence than
peripheral developers in steering the project. The use of a decaying equation
allows projects to change their direction based on the agents contributing
to them while at the same time maintaining inertia, based on work already
completed on the project. The speed at which a project is able to change is
adjusted by changing ε. A value of 0.5 is chosen, which allows projects to be
agile and rapidly adapt as the developer population changes while still pro-
viding a level of inertia to the project that comes from the work performed
by earlier developers.

Projects are assigned to maturity stages based on the percent of the
project that is complete. Setting the thresholds for the development stages
is based on empirical data; namely, the percentage of commits that occur in
a development stage is used as a proxy for the amount of work (i.e. resources
contributed) that occurred in that stage. The dates projects changed stages
was ascertained using the FLOSSmole database [5]; CVSAnalY2 [6] was
then used to build database tables from each project’s SCM logs, which
were subsequently queried to determine the number of commits in each
stage. The mean percentage of commits that occur in each stage is shown
in Fig. 3.

12



Figure 3: Mean percentage of code commits that occur in each development
stage.

Projects are thus assigned to development stages based on (9).

d(x) =





planning if 0.0 ≤ x < 0.11,
pre-alpha if 0.11 ≤ x < 0.25,

alpha if 0.25 ≤ x < 0.53,

beta if 0.53 ≤ x < 0.78,

production/stable if 0.78 ≤ x < 0.96,

mature if 0.96 ≤ x ≤ 1.0

where x is the fraction of resources completed on a project, i.e., cumulativeResources
resourcesForCompletion

(9)

For example, a project in the model will be considered in the alpha stage if
between 25% and 53% of the work has been completed.

A project is considered complete when its cumulative resources is equal
to its resources for completion. Completed projects are not removed from the
model. While they are not eligible for further contributions by developing
agents, these projects may still be downloaded by users.

13



Figure 4: The number of projects on SourceForge with respect to time.

7.4 Adding New Projects

New projects are created and added to the model at each time step, repre-
senting the new projects that are constantly being added to the open source
community. The rate of creation of projects is based on empirical data from
SourceForge, mined from the FLOSSmole database [5] and shown in Fig. 4.

The equation for the best-fit line is shown in (10):

y = 1242x + 88098 (10)
where

x is the number of months offset from October 2004 (i.e., 10/04 is 0,
11/04 is 1)

For the regression line, R2 = 0.92, indicating that the line is a good fit and
supporting that projects are added to SourceForge at a roughly linear rate,
namely around 1242 projects per month. The occasional decrease in the
number of projects appears to occur when SourceForge performs some level
of housekeeping and removes dead projects, although SourceForge’s policy
about the removal of projects does not appear to be publicly documented
(i.e. frequency, criteria for removing a project, etc.).

FLOSSSim is normally run with a reduced set of projects, in which
case the rate at which projects are added to the simulation is appropriately

14



scaled.

References

[1] V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske,
J. Goss-Custard, T. Grand, S. K. Hienz, G. Huse, A. Huth, J. U.
Jepsen, C. Jørgensen, W. M. Mooij, B. Müller, G. Pe’er, C. Piou, S. F.
Railsback, A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Rüger,
E. Strand, S. Souissi, R. A. Stillman, R. Vabø, U. Visser, and D. L.
DeAngelis, “A standard protocol for describing individual-based and
agent-based models,” Ecological Modelling, vol. 198, pp. 115–126, 2006.

[2] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and S. F.
Railsback, “The ODD protocol: A review and first update,” Ecological
Modelling, vol. 221, pp. 2760–2768, Sep. 2010.

[3] D. Weiss, “Quantitative analysis of open source projects on Source-
Forge,” in Proceedings of the First International Conference on Open
Source Systems (OSS 2005), M. Scotto and G. Succi, Eds., Genova,
Italy, 2005, pp. 140–147.

[4] R. A. Ghosh, B. Krieger, R. Glott, and G. Robles, “Part 4: Survey
of developers,” in Free/Libre and Open Source Software: Survey and
Study. Maastricht, The Netherlands: University of Maastricht, The
Netherlands, Jun. 2002.

[5] J. Howison, M. Conklin, and K. Crowston, “FLOSSmole: A collabora-
tive repository for FLOSS research data and analyses,” International
Journal of Information Technology and Web Engineering, vol. 1, pp.
17–26, Jul. 2006.

[6] C. Garcia-Campos, The CVSAnalY Manual, 2.0.0 ed., User Manual,
LibreSoft, Apr. 2009. [Online]. Available: http://gsyc.es/ car-
losgc/files/cvsanaly.pdf

[7] K. Crowston and B. Scozzi, “Open source software projects as virtual
organizations: Competency rallying for software development,” in IEE
Proceedings Software, vol. 149, no. 1, 2002, pp. 3–17.

[8] E. S. Raymond, “The cathedral and the bazaar,” Thyrsus Enterprises,
Tech. Rep. 3.0, Sep. 11, 2000.

15



[9] R. A. Ghosh and V. V. Prakash, “The Orbiten free software survey,”
First Monday, vol. 5, no. 7, Jul. 3, 2000. [Online]. Available:
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/769/678

[10] S. Krishnamurthy, “Cave or community?: An empirical
examination of 100 mature open source projects,” First
Monday, vol. 7, no. 6, Jun. 2002. [Online]. Available:
http://www.firstmonday.org/issues/issue7 6/krishnamurthy/index.html

16


