BARGAINING MODEL

D. J. Poza; F. A. Villafafhez

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

ACKNOWLEDGEMENTS

Authors acknowledge the financial support from the Spanish Ministry of Science (Grant
TIN2008-06464-C02-02) and the INSISOC members for fruitful discussions and intense
debates.

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

J

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez
1. INTRODUCGTIONciiriirieresssmsses s ss s s s snmsmn s e s s s s s s ssn s s e s s s se s s s snnnnnssensnnas 3
7 I = 0 T PO 3
3. ORIGINAL MODEL AND NEW FUNCTIONALITIES.......ccccceiiininmrrerrenssssssssnnnnnnes 4

BT TR S 1o - L 4
BT 11 = 4 o Lo T I o T Y 4
3.3. DeCisSion RUle........cci it 5
4. SETTING THE PARAMETERS BEFORE STARTING THE SIMULATION.............. 7
4.1. Parameters to Control the Simulation...........ccccciiiimninncncs s 7
4.2. Parameters to Change the Contour Conditions..........cccccccriiiminisinincnissennssenns 8
4.3. Parameters that change the behaviour of the system...........cccccciiiiiiiiiniinnnns 9
5. HOW TO RUN THE MODELcociiiiiiiiirnrereesnsssssssssssssss s sssssssssssssssssssssssnnns 10
6. STOP CONDITIONS AND INTERESTING SCENARIOS.ccccoomrrririennnnnen, 12
L2 IO =Ty X 1Y o | 8 o1 12
6.2. Two-Agent Types (THE TAG MODEL)cccocoemninmnnimnnes s ssssss e 12
FUTURE EXTENSIONSciiricicecccrrrnr s ssnsses s s s s smmmmn s s s es s s s smmmnnsnnnes 14
REFERENGCES ... s s s s s s ssssn s s s se s s mmmnnn s e e e s s s smmmnnnn s 14
APPENDIX I. HOW TO PLACE THE AGENTS ON THE SIMPLEX.........cccccccrrrnnnne. 15
APPENDIX II. HOW TO BUILD THE DECISION BORDERS.ccccoiiinmrrereennnnns 21
APPENDIX IIl. SOURCE CODE..........cccoottiiiriiinnnnnsrresss s ssssssssssss s s s ssssssssssssssssssssas 28

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

1. INTRODUCTION

This application is a replication of a model developed by Robert Axtell, Joshua M. Epstein and H. Peyton
Young [1]. The paper in which the model is described (The Emergence of Classes in a Multi-Agent
Bargaining Model) was initially published as a Working Paper of the Brookings Institution, ‘Center on
Social and Economic Dynamics’, working paper No. 9, in February 2000.

In this model', two players randomly paired demand some portion of the same pie, and the reward that
each player gets depends on the portion demanded by her opponent. They can demand three possible
portions: low, medium or high. As long as the sum of the two demands is equal or less than 100 percent of
the pie, each player gets what she demands; otherwise each gets nothing.

2. THE MODEL

There is a population of n agents that are randomly paired to play. Each agent has a memory in which she
retains the decision taken by her opponents in m previous games. The agent uses the information stored
in her memory to demand the portion of the pie that maximizes her benefit (with probability 1-¢) and
randomly (with probably €, where € represents the noise level in the system).

The decision rule is quite simple. Each player takes a decision computing in her memory how often each
option has been chosen by her opponents in previous matches. Then, the player chooses the best
decision according to a “maximizing” decision rule. We consider the original decision rule used in this
model, ar12d compare the results with a more simple-satisficing one. Both are explained later on this
document”.

Afterwards, the two agents store the decision taken by their opponents in their memories.

Then, two different players are randomly chosen to start a new match. This process continues until all the
agents in the population have played.

At this point, the current iteration has finished (i.e. all the agents have played once). This process is
repeated successively until either the maximum number of iterations® is reached or the system reaches a
particular scenario.

Agents are represented on a simplex determined by the memory state of the agents. The more demands
of ‘low’ an agent keeps in his memory, the closer to the bottom-right vertex it is plotted. Equivalently, if a
player’'s memory contains a considerable amount of ‘high’ decisions, it is placed near the top vertex. Finally,
if most of the elements in an agent’'s memory are ‘medium’, it is plotted close to the bottom-left vertex.

The simplex is split into three different regions4, separated by three ‘decision borders’. The top region is
dominated by frequent demands of ‘high’ in previous matches; on the right region, ‘low’ is the dominant
element in the agents’ memories; whereas agents on the left region have often found that their opponents
demand M.

This application has two versions:
* 1-agent type bargaining model.
e 2-agent types bargaining model (tag model).

In the first version, all the agents have the same tag, whereas in the second version, half of the population
has one tag (colour) and the other half has another tag (another colour). This lets the agents be
distinguishable from one another and makes the system evolve to different scenarios in which segregation
can emerge.

In the 1-agent type model, the agents have only one memory set. This is why there is only one simplex in
the application. However, in the 2-agent types model, we need two simplexes, as each agent has two

' Reader can access the applets at http:/www.insisoc.org/bargaining_model _no_tags.html and |

http://www.insisoc.org/bargaining_model tag _model.html
* Although there was only one decision rule in the original model, we introduced the possibility of

choosing a new decision rule in our replication.
’ The maximum number of iterations is chosen by the user before the simulation is started.
* The layout of the decision borders depends on the selected decision rule.

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

(Bancanmaons —

memory sets: intratype-memory (where she records the matches against players with the same tag) and
intertype-memory (where she retains the matches against players with different tag).

The following figures show the interface of the application for the 1-agent type model and the 2-agent
types model, respectively:

T STATUS

TNTRATYPE INTERTYPE
(same type) (clfferent type)

MEDILM L MEDIUM L

3. ORIGINAL MODEL AND NEW FUNCTIONALITIES

Although our work is a replication, we have added some new features to the original model to study its
structural robustness [2]. To this aim, we added the possibility of changing some of its fundamental
assumptions:

¢ Payoff matrix
« Memory type

¢ Decision rule

3.1. Payoff Matrix

The payoff matrix represents the different combinations of rewards for each player depending on the
decision taken by her opponent:

H M L H M L
H| 0,0 0,0 | 90,10 H| 00 0,0 | 80,20
M| 0,0 | 50,50 | 50,10 M| 0,0 |50,50| 50,20
L | 10,90 | 10,50 | 10,10 L | 20,80 | 20,50 | 20,20
H M L. H M L
H| 00 0,0 | 70,30 H| 0,0 0,0 | 60,40
M| 0,0 |50,50 5030 M| 0,0 | 50,50 | 50,40
L | 30,70 | 30,50 | 30,30 L | 40,60 | 40,50 | 40.40

In the original model, the values assigned to low, medium and high were fixed: 30% of the pie for L; 50% of
the pie for M and 70% of the pie for H. However, in our replication, we added the possibility of changing
these rewards by choosing a different payoff matrix (i.e. we added different combinations of payoffs).

3.2. Memory Type

The user can choose up to three different memory types. Notice that the original model operates with
‘Standard memory’. In any case, the initial values of the memory are chosen at random. The main
characteristics of each memory type are described below:

—

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

e Standard memory: This memory configuration was used in the original model. All the elements in
the memory set have the same weight (i.e. the recent memories have no more importance than the
older ones). When the system is started, the agents’ memories are initialized with m random values
of low, medium and high. When an agent is paired to play with another agent, she stores in her
memory the decision taken by her opponent and ‘forgets’ the oldest element in her memory so that
the memory size is kept.

* Progressive memory: As it occurred in the standard memory, all the elements in the memory set
have the same weight (i.e. the recent memories have no more importance than the older ones).
However, all the agents are initialized with a memory-size of 1. When an agent is paired to play with
another agent, she adds the decision taken by her opponent in her memory, but does not delete the
oldest element stored in her memory until the memory reaches a size of m. This means that the
memory size is i (1<i<m) during the first m iterations and m thereafter.

« Endorsed memory: As it occurred in the standard memory, when an agent is paired to play with
another agent, she stores in her memory the decision taken by her opponent and ‘forgets’ the
oldest element in her memory, so that the memory size is kept. When the system is started, the
agents’ memories are initialized with m random values of low, medium and high. However, in this
memory configuration, the recent memories have more importance than the older ones. To this aim,
a weight is assigned to each memory position. These weights follow an arithmetic progression with
common difference ‘d’. The value for ‘d’ is chosen by the user in the interface screen.

3.3. Decision Rule

There are two decision rules available for the agents:
 Demand the option that maximizes the expected benefit (original decision rule).

e Choose the best reply against the opponent’s most frequent demand (new feature added to the
replication).

The differences between these decision rules are explained below:

e DEMAND THE OPTION THAT MAXIMIZES THE EXPECTED BENEFIT:

Before taking a decision, the agent calculates the probability that her opponent chooses L, M or H.
She assumes that the probabilities that her opponent chooses L, M or H are the following:

o P(‘opponent chooses L’) = sum of elements equal to L in her memory / memory size
o P(‘opponent chooses M’) = sum of elements equal to M in her memory / memory size
oP(‘opponent chooses H’) = sum of elements equal to H in her memory / memory size

where P(‘opponent chooses x’) is the probability that her opponent chooses x.

Afterwards, she calculates the expected benefit of choosing L, M or H according to the selected
payoff matrix (i.e. combinations of values for L, M and H):

oB(L)
o B(M)

L - P(opponent chooses L) + L-P(opponent chooses M) + L-P(opponent chooses H)

M - P(opponent chooses L) + M-P(opponent chooses M) + 0-P(opponent chooses H)
oB(H) = H - P(opponent chooses L) + 0-P(opponent chooses M) + 0-P(opponent chooses H)
where: B(x) is the agent’s expected payoff if she demands x.

Finally, she chooses the maximum of the three expressions above, as it maximizes her expected
benefit.

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez J

e CHOOSE THE BEST REPLY AGAINST THE OPPONENT’S MOST FREQUENT DEMAND

In this case, the agent also calculates the probability that her opponent chooses L, M or H in the
same way as it did in the original decision rule:

o P(opponent chooses L) =sum of elements equal to L in her memory / memory size
o P(opponent chooses M) =sum of elements equal to M in her memory / memory size
o P(opponent chooses H) =sum of elements equal to H in her memory / memory size

However, in this case, the agent calculates which of the three options above is the most likely,
and then, she chooses the best reply against the expected opponent’s decision.

This is to say:

o If the agent expects that his opponent will choose L, she decides to choose H (as it is the best
reply against L).

o If the agent expects that his opponent will choose M, she decides to choose M (as it is the
best reply against M).

o If the agent expects that his opponent will choose H, she decides to choose L (as it is the best
reply against H).

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

4. SETTING THE PARAMETERS BEFORE STARTING THE SIMULATION

The user can adjust several parameters in the interface of the application. Some of these parameters
control the simulation; others are useful to change the contour conditions and some can be used to change
the behaviour of the system.

4.1. Parameters to Control the Simulation

The user can change some of the parameters that control the simulation:

 number_of_iterations: This is the number of matches that each agent plays during the simulation.
We say that an iteration is completed when all the agents have played once.

* label_on_agents?: When this switch is activated, each agent displays her id. This is especially
useful in the tag model, where an agent is placed in a different position in the intratype simplex and
the intertype simplex.

o stop_if_equilibrium? If this switch is activated, the simulation stops when the system reaches a
particular scenario® (fractious state or equitable equilibrium). If it is switched off, the simulation
continues until the specified number_of iterations is reached.

File Edi

deci:

Demand the option that maximizes the expected be.,

Command Center e

observer =

> These particular scenarios are described later on this document

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

4.2. Parameters to Change the Contour Conditions

e n:number of agents.
e m: agent’s memory size.

« epsilon: Noise level in the system. This parameter represents the probability that the agent takes
a decision at random instead of using the specified decision rule.

* low (lowest payoff): The user selects the value assigned to low (i.e. the lowest reward) and the
application generates the corresponding payoff matrix: The value assigned to medium is always
50 and the value assigned to H is 100 — low. The payoff matrix is shown in th(;§ interface screen.
Notice that the decision borders change according to the selected payoff matrix .

Bargaining model (no tags) - NetLogo (EAVOLTERRAMMODELO HETLOGO GRID}

File Edt Tools Zoom Tabs Help

ntesface | Information Procedures
+ [V] view updates e
s Button - B | Settings.., |
Add | |
il normal speed continuous | v —
A~
W 4» 5 Elapsediterations: 0 an

SYSTEM STATUS

2. SELECT A PAYORF MATRIX

L H H |a
L 1(30,30)1{30,50) 1{30,70) |
H |{50,30)1(50,50}1 {0,0} I
H I{70,30)1 (0,0} 1 (0,0) Iy

Demand the option that maximizes the expected be... ‘?l

IM THE CASE OF EMDORSED
on difference in the arithretic

: 2 - : [| Cn iy ‘
SETUP GO - st -
- . . s . . T -iF - ilibrium?
= = - : . o stop-if-equilibrium? ‘

>

Command Center FJ |
A
v
observer> |

% Only if the selected decision rule is ‘Demand the option that maximizes the expected benefit (original
decision rule).

ﬁ

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

4.3. Parameters that change the behaviour of the system

« decision-rule: This button lets the user choose the decision rule that the agents use. There are
two possible options:

o Demand the option that maximizes the expected benefit. This decision rule is used in the
original model.

o Choose the best reply against the opponent’s most frequent demand:

e memory-type: This button allows to choose among three possible memory configurations:
o Standard memory

o Progressive memory

o Endorsed memory (in this case we have to select the common difference of the
arithmetic progression).

Bargaining model {no tags) - HetLogo {E:1¥OLTERRAMODELO NETLOGO GRID}

File Edt Took Zoom Tabs Help
Interface | Information | Procedures

e 1 1 [viewupdates § ————
+ apg Button ' 3 = | Settings..,
Add ——— @& L

normal speed continuous [|

AMETERS TORUN THE SIMULATION [s s B 5o
SYSTEM STATUS

30 v|
L H H ~

L |{30,30) |{30,50)1(30,70) |

4. SELECT A MEMORY CONFIGURATION

i OMLY IN THE CASE OF ENDORSED
f MEMORY: common difference in the
prOgression N
, e | [e——— | 00, |sbel-on-agants?
s | = | n_ numberof agents 20 | number_of jterations 100__!|_°ff FREARNRS
! | (I S | (S N | 0N cinn i sal
m MEMOry size 10 | epsilon nolse level 0,10]‘Oﬁf staprf-equilbtum?
= ;
Command Center (o] [Clear |
~
W
-

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

5. HOW TO RUN THE MODEL

fOLTERRAMODELO HETLOGO GRID}

Fie Edt Tools Zoom Tabs

Tnterface | Infomation | Pracedures |

TR
S8 e |

1. CHOOSE THE PARAMETERS TO RUN THE SIMULATION
n: number of agenks

: memory size

number_of_ferations

epsilon: nioise level

2. SELECT A PAYOFF MATRIX

L 3 B
L 1(30,30]1(30,5001(30,70) |
M |(50,30) (50,5001 (0,0} |
H [(70,30) 1 (0,0} | (0,0) | s

~

3. CHOOSE A DECISION RULE

4. SELECT A MEMORY CONFIGURATION

OMNLY IM THE CASE OF ENDORSED
MEMORY: common difference in the arithmetic
prngression

5. CLICK SETUP AND THEN GO TO START THE SIMULATION

1. Choose the parameters to run the simulation:

o n:number of agents

o m:memory size

o number of iterations
o epsilon: noise level

2. Select a payoff matrix

Choose the value for low. The

corresponding payoff matrix will be | 9
displayed as soon as you press the L n H
setup button. L |(30,30){30,50)(30,70]|

M | (50,3001 (50,5001 (0,00 |
H (70,3001 (0,07 1 (0,00 |

3. Choose a decision rule:

o Demand the option that maximizes

the expected benefit.

o Choose the best reply against the

opponent’s most frequent demand.

4. Choose a memory configuration:

o Standard
o Progressive Progressive
. . Endorsed
o Endorsed (in this case select the OMLY IN THE CASE OF EMDORSED
H MEMORY: common difference in the arithrnetic
common difference of the o

arithmetic progression).

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

—— —

5. Click setup and then go.
Use the SETUP button to initialize the system,

and then use the GO button to begin the execution.

6. In addition, you can:

o Display the agents’ id: use the ‘label-on-agents?’ slider.

o Decide whether to stop or not the simulation when

a concrete scenario is reached.

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL

D. J. Poza; F. A. Villafaiez]

6. STOP CONDITIONS AND INTERESTING SCENARIOS

6.1. One-Agent Type

We distinguish two interesting scenarios [3]:

e EQUITABLE EQUILIBRIUM: In this state, all the agents have found frequent demands of M in
the past, and they assume that M is the best response. Because all the agents demand M, all the
pie is shared out among the players, which means that the system has reached an efficient state.

We consider that the system has reached an equitable equilibrium when all the agents have, at
least, (1-¢)-m elements equal to M in their memories.

« FRACTIOUS STATE: In this case, all the agents are aggressive or passive (most of them select
L or H; M is hardly chosen) and no equilibrium is reached.

We consider that the system has reached a fractious state when all the agents have, at most,
& -m elements equal to M in their memories.

6.2. Two-Agent Types (THE TAG MODEL)

We distinguish up to five different evolutions in the system [3]:

e INTRATYPE MATCHES (matches between agents with the same tag)

comse .
MEDIUM Low MEDIUM Low MEDIUM

INTRATYPE INTRATYPE INTRATYPE
HIGH HIGH HIGH

INTRATYPE EQUITABLE EQUILIBRIUM INTRATYPE SEGREGATION INTRATYPE FRACTIOUS STATE

o

INTRATYPE EQUITABLE EQUILIBRIUM: All the agents (no matter their tag) reach an
equitable equilibrium. The stop condition for this scenario is the following:

all the agents have, at least, (1-¢)-m elements equal to M in their memories

INTRATYPE SEGREGATION: The agents of one tag (colour) reach a fractious state
and the agents with the other tag (colour) reach a fractious state. The stop condition for
this situation is explained below:

all the dark agents have, at least, (1-¢)-m elements equal to M in their memories and
all the light agents have, at most, € -m elements equal to M in their memories

or

all the light agents have, at least, (1-¢)-m elements equal to M in their memories and all
the dark agents have, at most, € -m elements equal to M in their memories

INTRATYPE FRACTIOUS STATE: All the agents (no matter the colour) reach a
fractious state. The stop condition for this is the following:

all the agents have, at most, € -m elements equal to M in their memories.

12]

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL

D. J. Poza; F. A. Villafaiiez]

e INTERTYPE MATCHES: (matches between agents with different tag)

INTERTYPE
HIGH

e
MEDIUM Low

INTERTYPE
HIGH

MEDIUM

Low

INTRATYPE EQUITABLE EQUILIBRIUM

INTRATYPE SEGREGATION

o INTERTYPE EQUITABLE EQUILIBRIUM: All the agents (no matter their tag) reach an
equitable equilibrium. The stop condition for this scenario is the following:

all the agents have, at least, (1- €)-m elements equal to M in their memories

o INTERTYPE SEGREGATION: All the agents with one tag (colour) demand H and all the
agents with the other tag (colour) demand L. The stop condition is the following:

all the dark agents have, at least, (1- £)-m elements equal to H in their memories and all
the light agents have, at least, (1- €):m elements equal to L in their memories

or

all the dark agents have, at least, (1- €)-m elements equal to L in their memories and all
the light agents have, at least, (1- €):-m elements equal to H in their memories.

FUTURE EXTENSIONS

We are currently working in playing the game in a 2D grid and with different social networks topologies, to
study how the segregation can affect/be affected when agents are not randomly paired. A preview of this
application is available at http://social-simulation.blogspot.com/2009 04 01 archive.html

-

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

(Bancanmaons —

REFERENCES

1. Axtell, R.; Epstein, J.M. and Young, P.(2000). The Emergence of Classes in a Multi-Agent Bargaining
Model. Brookings Institution - Working Papers No.9. February 2000.

2. Poza, D., Villafafiez, F., and Pajares J. (2009). “Impact of tag recognition in economic decisions”. In
Hernandez, Posada and Lopez-Paredes (Eds): Artificial Economics. The Generative Method in Economics,
LNEMS Vol. 631. Springer.

3. Poza, D., Villafafiez, F., Pajares J., Lopez-Paredes, A. And Hernandez, C. (2009). “New insights on the
Emergence of Classes Model”. Proceedings ESSA2009 Conference. Surrey.

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL

D. J. Poza; F. A. Villafaiiez }

APPENDIX I. HOW TO PLACE THE AGENTS ON THE SIMPLEX

The aim of this appendix is to show the steps we have followed to obtain the
coordinates of an agent as a function of the number of elements equal to 30, 50 and 70

stored in her memory.

Let X230 be the sum of the number of elements equal to 30 in the memory

vector.

Let X250 be the sum of the number of elements equal to 50 in the memory

vector.

Let X270 be the sum of the number of elements equal to 70 in the memory

vector.

Let / be the length of the side of the triangle.

We know the following information about the line a:

Nlm

270

— s
Y 70+ 30

15]

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

-1t passes through the point 1: (0,0)

-1t passes through the point 2: 1—icos(w")-l,isin(w‘))-lj
230+ZX70 230+X70
The equation of a generic line is:
x=a+by (1)

Since the point 1 belongs to the line a, it fulfils its equation. If we replace the
value of the point 1 in the equation (1), then we get a=0. If we replace the
obtained value of a in the equation (1), we obtain the following equation for the
line a:

x=by (2)

In addition, the point 2 also fulfils the equation 2, as it belongs to that line. If we
replace the value of the point 2 in the equation (2) we obtain the following
expression:

1o — 270 08609y = b—2"0in(60°)1 (3)
304270 30+ 270

If we isolate b in the expression above, we obtain the following value for b:

1 _cos(60°) 1 1

_ET0 Gingeoey SI00%) 270 o 6oy tan(60°)
£30+ 270 304270

b=

(4)

Finally, in we replace the value of b (4) in the expression (2), we obtain the
equation of the line a:

1 1
_ — |y
270 $in(60°) tan(60°)
230+270

S)

Equation of the line a

[s |

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

We know the following information about the line b:

b
\\
pt.4
.l A . \\
2 70+2 50 S
\/ N
N
N
N
N
N

9 bo

- It passes through the point 3:(/,0)
- It passes through the point 4:
[270 270

———¢0s(60°)-/,—————sin(60°)-/
250+ 270 250+ X70

Let us use the generic equation of a line (1). The point 3 belongs to the line b,
this is why it fulfils its equation. Therefore, if we replace its value in the equation

(1) we obtain the following value for a:
a=1 (6)

The point 4 also belongs to the line b. Consequently, it fulfils its equation. If we
replace the value of the point 4 in the equation (1), we get the following
expression:

270

270 0s(60°)1 = a+ h—2T0in(60°)7 (7)
50+ 270 %50

+270

If we replace the value of a (6) in the expression (7), then we can isolate the
value of b:

Acos(@")-l -1 Acos(@")-—l 1 1
p— 2504370 _ 350+%70 _ _ (8)
20 sin(60°) 20 sin(60°) 1an60 20 sin(60°)
250+ 270 350+ 270 250+ 270

Let us replace the obtained values of a (6) and b (8) in the generic expression of

17]

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

a line (1) and we obtain the equation of the line b:

1 1
=l SINC
tan 60 270 sin(60°)

250+270

Equation of the line b

We know the following information about the line c:

Y
A
H
-- pt.6
!
I
/
I
I
gy |
2 /
I
/
I
I
o /
lllllllllllllllllllllllllllllll 160 , pt.5 pt.3
‘M £ L7 X
C:
: : :
230~
2 30+2.50
!
It passes through the point 5:| 0 Z—30-1 (10)
7 230+250

! «/—j (1)

- It passes through the point 6: {— —

Since the point 5 belongs to the line c, it fulfils its equation. If we replace the
value of the point 5 in the equation (1), we obtain the following:
0=q+b—29 (12)
230+ X250

Moreover, the point 6 also fulfils the equation of the line c, as it belongs to that
line. Let us replace the coordinates of the point 6 in the equation (1):

[1 |

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

Loaip¥3y (13)
2 2

The equations (12) and (13) make a system of two equations and two variables.
If we solve this system, we obtain the following values for a and b:

230
1 $30+%50
a=— 1 14
2 330 43 1)
¥30+350 2
1 1
b=—— 15
2 330 43 1o
£30+350 2

Finally, we replace the values a and b in the generic expression of a line (1) and
obtain the equation of the line c:

%30
1 _ ¥30+350 1 1
xX=— d+—— Y (16)
2 330 43 2 330 3
2304150 2 2304150 2

Equation of the line ¢

Let us consider a player with X30 elements equal to 30 in her memory;
250 elements equal to 50 and X70 elements equal to 70. Its position in the
simplex will be determined by the intersection of the three lines (a, b and c)
which equations we have just calculated.

First, let us calculate the intersection of the lines a and b. To this aim, we set the
expression (5) equal to (9) and get the following coordinates:

I R
{230Z 7()270}“600 e
J’_
‘- ;a7
Lo 12
370 270 |sin60° tan60°

230+270 250+270

-

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

y= 1 (19)

S SR U
270 £70 |sin60° tan60°

230+270 250+270

In the case that ©70= 0 (there are no elements equal to 70 in the agent’s
memory), the equations (17) and (18) are no longer valid as the denominator
becomes zero.

In this case, we know that the agent will be placed across the horizontal side of
the simplex (segment M — L). Therefore, the coordinates of this player and the
point 5 will match. This is to say:

230

x=——] (19)
£30+ £50

y=0 (20)

Important notice: In the original model, the values for ‘low’ (L), ‘medium’ (M)
and ‘high’ (H) were fixed. All the calculated expressions match the original
model: ‘low’ is 30%; ‘medium’ is 50% and ‘high’ is 70%. We can generalize the
calculated expressions for other combination of rewards by replacing the
following terms:

230 €> %L
50 €>EIM
210€>EH

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

APPENDIX Il. HOW TO BUILD THE DECISION BORDERS

The layout of the decision borders depends on the decision rule:

1.CHOOSE THE BEST REPLY AGAINST THE OPPONENTS’ MOST
FREQUENT DEMAND:

In the equilibrium point, an agent has the same tendency to demand L, M or
H, as the number of elements equal to L, M and H in her memory match. This
is to say:

£30 = 250 = £70 (21)

If we take into account the expression (21) in the expressions (17) and (18),
we obtain the coordinates of the equilibrium point:

y= g-z (23)

e Calculate the coordinates of the point of the simplex in which there
is no tendency to choose L and there is the same tendency to
choose M or H:

This case emerges when the agent’s memory fulfils the following
conditions:

30 =0 (24)
¥50 = £70 (25)

If we replace the values of the expressions (24) and (25) in the equations
(17) and (18), we obtain the coordinates of the point that we are

searching:
1
- 26
x= (26)
yz—f-z (27)

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

e Calculate the coordinates of the point of the simplex in which there
is no tendency to choose M and there is the same tendency to
choose L or H:

In this case, the agent’s memory fulfils the following condition:

£50=0 (28)
£30 = £70 (29)

If we replace the values of the expressions (28) and (29) in the equations
(17) and (18), we obtain the coordinates of the point that we are

searching:
3
=—1 30
x=2 (30)
y= —43) (31)

e Calculate the coordinates of the point of the simplex in which there
is no tendency to choose H and there is the same tendency to
choose L or M:

In this case, the agent’s memory fulfils the following condition:

270 =0 (32)
£30 = £50 (33)

If we replace the values of the expressions (32) and (33) in the equations
(17) and (18), we obtain the coordinates of the point that we are
searching:

x==1 (34)

y=0 (35)

2.DEMAND THE OPTION THAT MAXIMIZES THE EXPECTED BENEFIT

In the equilibrium point, an agent will have the same tendency to choose L, M
or H when the benefits of choosing L, M and H match.

In this case, the benefit of choosing 30, 50 and 70 will be the following:

B(30) =30 (36)
B(50) = 50(230 + 250)/ m (37)
B(70) = 70230/ m (38)

[22

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

At this point, the aim is to calculate the values of X230, X50and Xx70that
make the expressions (36), (37) and (38) match. Once these values are
obtained, we will replace them in the equations (17) y (18) and obtain the
coordinates of the equilibrium point.

To make this process simpler, we will call:

A=1330/m (39)
B=350/m (40)
C=370/m (41)

Notice that the sum of the expressions (39), (40) and (41) is 1:

A+B+C=230/m+250/m+270/m=m/m=1 (42)

Following this notation, the equations (36), (37) y (38) will turn into the
following expressions:

B(30) =30 (43)
B(50) = 50:(4 + B) (44)
B(70) =70-4 (45)

In the equilibrium point, the expected benefits of choosing 30, 50 and 70
match. Therefore, in this point, the expressions (43), (44) and (45) also
match:

30=50(4+B)=1704 (46)
If we set (43) equal to (45):

30=70-4

If we isolate 4, we obtain the following:

3

A== (47)

Now, let us set the expression (43) equal to (44):
30=50-(4+ B)

If we isolate B in the expression above and replace the value of 4 (46), we

[23

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

obtain the following:

p=3_3_6 (48)
5 7 35

Finally, we obtain the value of C. To this aim, we take into account the
equation (42)

C=1-4-B (49)

Let us replace the obtained values for 4 and B (47) and (48) respectively in
the equation (49). We obtain the following:

C=1l-———== (50)
If we replace (39), (40) and (41) in the expressions (17) and (18), we obtain

the coordinates of a point as a function of A, B and C:

1 1
{ C }sin60° tan 60
A+C

1 1 1 2

l’
C C |[sin60° tan60°
A+C B+C

1 1 1 2

l’
C C |[sin60° tan60°
A+C B+C

If we replace the obtained values for A (47), B (48) and C (50) in the
equations (51) and (52), we obtain the equilibrium, point in which the benefit
is the same for the three possible options (30, 50 and 70):

e Calculate the coordinates of the point of the simplex in which the
benefit of choosing L equals the benefit of choosing H:

If the benefit of choosing 30 and 70 match, this point fulfils the following
condition:

[24

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

B(30) = B(70) (53)

If we replace (43) and (45) in the expression (53), we obtain the equation
below:

70-4 =30 (54)

Moreover, because this point is on the right side of the simplex, there are no
elements equal to 50 in the agent’s memory:

50 =0 (55)

If we replace the value of (40) in (55) we get:
(56)

Therefore, to calculate this point, we have a system of three equations (42),
(54) and (56) and three variables (A, B and C):

A+B+C=1
B=0
704 =30

If we isolate the three variables, we obtain the following values:

To obtain the coordinates of this point, we replace (57) in (17) and (18).

e Calculate the coordinates of the point of the simplex in which the
benefit of choosing M equals the benefit of choosing H:

If the benefit of choosing 50 and 70 match, this point fulfils the following
condition:

B(50) = B(70) (58)

If we replace (44) and (45) in the expression (58), we obtain the equation
below:

[25

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

50-(A+B) =704 (59)

Moreover, because this point is on the left side of the simplex, there are no
elements equal to 70 in the agent’s memory:

£70=0 (60)
If we replace the value of (41) in (60) we get:

C=0 (61)
Therefore, to calculate this point, we have a system of three equations (42),
(59) and (61) and three variables (A, B and C):

A+B+C=1

Cc=0

50(A+B) =704

If we solve the system, we obtain the following values:

B=1-2 (=0 62
7 (62)

To obtain the coordinates of this point, we replace (62) in (17) and (18).

e Calculate the coordinates of the point of the simplex in which the
benefit of choosing M equals the benefit of choosing L:

If the benefit of choosing 50 and 30 match, this point fulfils the following

condition:

B(50) = B(30) (63)

If we replace (43) and (44) in the expression (63), we obtain the equation
below:

50(A+B)=L (64)

Moreover, because this point is on the horizontal side of the simplex, there
are no elements equal to 30 in the agent’s memory:

[2

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

[BARGAINING MODEL D. J. Poza; F. A. Villafafiez]

£30=0 (65)
If we replace the value of (39) in (65) we get:
A=0 (66)

Therefore, to calculate this point, we have a system of three equations (42),
(54) and (66) and three variables (A, B and C):

A+B+C=1
A=0
50(4+B)=1L

If we solve the system, we obtain the following values:

A=0 B=3 c=1-2 (67)
5 5

To obtain the coordinates of this point, we replace (67) in (17) and (18).

Important notice: To make the analysis simpler, we considered that the
simplex is an equilateral triangle which left vertex is set on the origin of
coordinates.

However, in the application, the simplex is centred on the origin of coordinates.
Therefore, we need to shift the coordinates (in the x and y axis) in the
application as follows:

x'= x—l-l
2
o, V3,
y=>y 4

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

APPENDIX lll. SOURCE CODE

1-AGENT TYPE BARGAINING MODEL.

breed [agents agent]

agents-own [memory]

globals
[
options ;i list that contains the following values - according to the chosen payoff matrix:
[low medium high]
medium ;i numeric value assigned to the 'medium' demand
high ;i numeric value assigned to the 'high' demand
simplex-side-length ;i length of the simplex side
agents-list ;i list that contains all the agents in the population
elapsed-iterations ;i number of elapsed iterations since the simulation was started
equitable-equilibrium-stop-condition ;; conditions for equitable-equilibrium
fractious-state-stop-condition ;; conditions for fractious state
equitable-equilibrium? ;i boolean variable that will become true if and only if the system has reached
an equitable equilibrium IN THE CURRENT ITERATION
equitable-equilibrium-at-least-once? ;i boolean variable that will become true if and only if the system has reached
an equitable equilibrium AT LEAST ONCE DURING THE SIMULATION
fractious-state-at-least-once? ;i boolean variable that will become true if and only if the system has reached
a fractious state IN THE CURRENT ITERATION
fractious-state? ;i boolean variable that will become true if and only if the system has reached
an equitable equilibrium AT LEAST ONCE DURING THE SIMULATION
system-status ;i this variable contains the message shown in the system-status monitor, in the
interface scrren.
endorsed-memory-weights ;; this list contains the weights assigned to each term in the endorsed memory
set
]
to setup
print "" ;:; leave a black line in the command center
clear-all ;; reset variables

;; DEFINE THE REWARDS ACCORDING TO THE SELECTED PAYOFF MATRIX (the value for the lowest reward -low- is chosen in the

interface screen)

set high 100 - low ;i set the value assigned to high
set medium 50 ;i set the value assigned to medium
set options (list low medium high) ;i create a list which contains the values assigned to low, medium and high

according to the selected payoff matrix

;i PRINT THE PAYOFF MATRIX ACCORDING TO THE SELECTED VALUE FOR LOW

output-print " L M H "

output-type " L | (" output-type low output-type "," output-type low output-type ") | (" output-type low output-type ","
output-type medium output-type ") | (" output-type low output-type "," output-type high output-print ") |"

output-type " M | (" output-type medium output-type "," output-type low output-type ") | (" output-type medium output-type
", " output-type medium output-print ")| (0,0) |"

output-type " H | (" output-type high output-type "," output-type low output-print ")| (0,0) | (0,0) |"

;i CREATE THE SIMPLEX
set simplex-side-length 150 ;i set the simplex size

create-simplex ;i call the procedure 'create-simplex'

;i CREATE A POPULATION OF n AGENTS
create-agents n

[

set shape "dot" ;i set the agent's shape

set size 4 ;; set the agent's size

set color black ;i set the agent's colour

if label-on-agents? [set label who] ;i create a label with the id of each agent

if memory-type = "Standard" [set memory n-values m [one-of options]] ;i create an m-size memory with random values

for each agent

if memory-type = "Endorsed" [set memory n-values m [one-of options]] ;i create an m-size memory with random values
for each agent

if memory-type = "Progressive" [set memory n-values 1 [one-of options]] ;; initialize the memory with just one value
choosen at random

set xcor place-agents-xcor (memory) ;i place the agents in the simplex according to
their memory status (x-coordinate)

set ycor place-agents-ycor (memory) ;i place the agents in the simplex according to

28

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

their memory status (y-coordinate)

;i SET THE INITIAL VALUE OF SOME OF THE GLOBALS VARIABLES

set system-status "---------- " ;; this message is shown in the system-status monitor until an
equitable equilibrium or a fractious state is reached

set equitable-equilibrium? false ;; at first, there is not an equitable equilibrium in the system

set fractious-state? false ;; at first, there is not a fractious state in the system

set equitable-equilibrium-at-least-once? false ;; at first, there is not an equitable equilibrium in the
system
set fractious-state-at-least-once? false ;; at first, there is not a fractious state in the system

;; CREATE A LIST WITH ALL THE AGENTS IN THE POPULATION

set agents-list sort agents ;7 turns the agentset into a list

;i CREATE A LIST OF WEIGHTS FOR THE ENDORSED MEMORY

if memory-type = "Endorsed"

[
let weights [] ;7 list of weights
let current-weight 1 ;7 lowest weight
let 1 0 ;; counter (loop)

while [i < m]

[
set weights fput current-weight weights ;; add the current weight to the list of weights
set current-weight current-weight + d ;i increase the weight for the next element
set 1 1 + 1 ;7 increase the loop counter

1

set endorsed-memory-weights weights ;7 update the global variable

if memory-type != "Endorsed" [set d 0] ;7 1f the memory is not 'endorsed', 'd' (difference common in the arithmetic
progression which is followed by the weights of each memory position makes no sense here

if decision-rule = "Choose the best reply againts the opponents' most frequent demand" and memory-type = "Endorsed"
[beep user-message "This decision rule is not compatible with an endorsed memory"] ;; displays a warning

in a pop-up window

end
to go
set elapsed-iterations 0 ;7 initialize the elapsed-iterations counter
while [elapsed-iterations < number of iterations] ;7 we run as many iterations as the value of the variable

number_of iterations

let players agents-list ;; retrieve the original list of agents
repeat (length agents-list) / 2 ;; the number of matches in each iteration is half the number

of agents

;i 1. TAKE TWO PLAYERS AT RANDOM FROM THE LIST OF AGENTS

let playerl one-of players ;7 choose one agent from the list of agents at random

set players remove playerl players ;; delete this agent so that it can't be chosen again during
this iteration

let player2 one-of players ;7 choose one agent from the list of agents at random

set players remove player2 players ;; delete this agent so that it can't be chosen again during

this iteration
;i 2. EACH AGENT TAKES A DECISION TAKING INTO ACCOUNT HIS MEMORIES ABOUT PREVIOUS MATCHES
let playerl-decision take-decision ([memory] of playerl) ;; player 1 takes his decision

let player2-decision take-decision ([memory] of player2) ;; player 2 takes his decision

;i 3. EACH AGENT STORES THE OPPONENT'S DECISION IN HIS MEMORY

ask playerl [set memory fput player2-decision memory] ;7 player 1 stores player 2's decision in his memory
ask player2 [set memory fput playerl-decision memory] ;7 player 2 stores player 1's decision in his memory
if memory-type = "Standard" or memory-type = "Endorsed" [ask playerl [set memory but-last memory]] i

Standard and endorsed memory: player 1 deletes his oldest value in his memory.
if memory-type = "Progressive" and elapsed-iterations >= (m - 1) [ask playerl [set memory but-last memory]] i

Progressive memory: player 1 deletes his oldest value in his memory when the m-size memory is reached

if memory-type = "Standard" or memory-type = "Endorsed" [ask player2 [set memory but-last memory]]
Standard and endorsed memory: player 2 deletes his oldest value in his memory.
if memory-type = "Progressive" and elapsed-iterations >= (m - 1) [ask player2 [set memory but-last memory]] i

Progressive memory: player 2 deletes his oldest value in his memory when the m-size memory is reached

;; 4. UPDATE THE POSITION OF THE TWO AGENTS IN THE SIMPLEX ACCORDING TO THE NEW MEMORY STATUS

askplayerl [setxyplace-agents-xcor (memory) place-agents-ycor (memory)] ;i placetheagents inthe simplexaccording

29

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

to their memory status (x-coordinate)
askplayer2 [setxyplace-agents-xcor (memory) place-agents-ycor (memory)] ;i placetheagents inthe simplexaccording
to their memory status (y-coordinate)

1

set elapsed-iterations elapsed-iterations + 1 ;; the current iteration has finished

tick ;7 increase the tick counter (number of elapsed iterations)
check-stop-conditions ;7 call the procedure 'check-stop-conditions'

if equitable-equilibrium? = true and stop-if-equilibrium? [print "* * * SIMULATION FINISHED * * *" stop] ;; if the

'stop-if-equilibrium?' swith is on, and the system has reached an equitable equilibrium in this iteration,

the simulation stops now.

if fractious-state? = true and stop-if-equilibrium? [print "* * * SIMULATION FINISHED * * *" stop] ;; 1if the
'fractious-state?' swith is on, and the system has reached a fractious state in this itaration, the simulation

stops now.

if elapsed-iterations = number_of iterations ;7 when the maximum number of iterations is reached, a message

is shown and the simulation finishes.

print "% % % SIMULATION FINISHED: The system has reached the maximum number of iterations. * * *"

if equitable-equilibrium-at-least-once? = false and fractious-state-at-least-once? = false [set system-status
"SIMULATION FINISHED" print "* * * No equilibrium was reached in the system. * * *"]

stop

end

to-report take-decision [agents_memory]

let random-number random-float 1 ;; create a random number

ifelse random-number < epsilon

;7 1f the random number is lower than epsilon, the decision is taken randomly
[

report one-of options

;7 1f the random number is lower than epsilon, the decision rule is 'rational'
[
if decision-rule = "Demand the option that maximizes the expected benefit"
[
let probability-opponent-demands-L (length filter [? = low] agents_memory) /m ;i count the number of appearances
of L in the agent's memory
let probability-opponent-demands-M (length filter [? = medium] agents_memory) /m ;; count the number of appearances
of M in the agent's memory
let probability-opponent-demands-H (length filter [? = high] agents_memory) /m ;i count the number of appearances

of H in the agent's memory

let reward-L low ;7 set the reward assigned to low
let reward-M medium ;; set the reward assigned to medium
let reward-H high ;; set the reward assigned to high

;; the agent calculates the expected benefit if he chooses L, M or H

let expected-benefit-L reward-L * probability-opponent-demands-L + reward-L * probability-opponent-demands-M +
reward-L * probability-opponent-demands-H

let expected-benefit-M reward-M * probability-opponent-demands-L + reward-M * probability-opponent-demands-M +
0 * probability-opponent-demands-H

let expected-benefit-H reward-H * probability-opponent-demands-L + 0 * probability-opponent-demands-M + 0 *
probability-opponent-demands-H

;7 calculate the best option

let possible-demands (list expected-benefit-L expected-benefit-M expected-benefit-H) ;; the list possible-demands
contains: [benefit if the agent chooses L , benefit if the agent chooses M , benefit if the agent chooses
H]

let best-option max possible-demands ;; the best option is the highest value in the list possible-demands

;i PARTICULAR CASE: TWO OR THREE OPTIONS RESULT IN THE SAME EXPECTED BENEFIT
if length filter [? = best-option] possible-demands > 1 ;7 1f two or three options produce the same benefit...
[
if item 0 possible-demands = item 1 possible-demands and item 1 possible-demands = item 2 possible-demands [report
one-of options] ;; benefit (low) = benefit (medium) = benefit (high) -> choose low, medium or high at random
if item O possible-demands = item 1 possible-demands [report one-of list low medium] ;; benefit (low) = benefit

(medium) -> choose low or medium at random

30

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

if item 0 possible-demands = item 2 possible-demands [report one-of list low high] ;i benefit (low) = benefit
(high) -> choose low or high at random
if item 1 possible-demands = item 2 possible-demands [report one-of list medium high] ;; benefit (medium) =

benefit (high) -> choose medium or high at random

;i GENERAL CASE: ONLY ONE OF THE THREE DEMANDS MAXIMIZE THE EXPECTED BENEFIT

if item 0 possible-demands = best-option [report low] ;i if the first element in the list of possible demands
is the best option, then the agent chooses low

if item 1 possible-demands = best-option [report medium] ;i 1f the second element in the list of possible demands
is the best option, then the agent chooses medium

if item 2 possible-demands = best-option [report high] ;i if the third element in the list of possible demands
is the best option, then the agent chooses high

if decision-rule = "Demand the option that maximizes the expected benefit" and memory-type = "Endorsed"
[
let 1 0 ;i set a counter for the while loop: O<=i<memory-size
let L O ;i L is the number of appearances of low endorsed by the position that

they appear in the memory
let Me 0 ;i Me is the number of appearances of medium endorsed by the position
that they appear in the memory
let HO ;i H i1s the number of appearances of high endorsed by the position that
they appear in the memory
let highest-weight 1 + (m - 1) * d ;i the highest weight is the last term in an arithmetic progression
with common difference 'd’
let current-weight highest-weight ;i the value of current-weight decreases as we move towards the oldest
values stored in the memory
while [i < length agents_memory]
[
if item i agents_memory = low [set L L + current-weight] ;i the value of L is increased if the current
memory position is low; current-weight decreases as we move towards the oldest values stored in the memory
if item i agents memory = medium [set Me Me + current-weight] ;; the value of Me is increased if the current
memory position is low or medium; current-weight decreases as we move towards the oldest values stored in
the memory
if item i agents_memory = high [set H H + current-weight] ;i the value of L is increased if the current
memory position is low; current-weight decreases as we move towards the oldest values stored in the memory
set 1 i + 1 ;i increase the array position
set current-weight current-weight - d ;i substract the common difference from the current-weight
to obtain a new weight for the next iteration
]
let S (2 + (m - 1) *d) /2 *m

let probability-opponent-demands-L L / S ;i count the number of appearances of L in the agent's memory
let probability-opponent-demands-M Me / S ;i count the number of appearances of Me in the agent's memory
let probability-opponent-demands-H H / S ;i count the number of appearances of H in the agent's memory
let reward-L low ;i set the reward assigned to low

let reward-M medium ;i set the reward assigned to medium

let reward-H high ;i set the reward assigned to high

;i the agent calculates the expected benefit if he chooses L, M or H

let expected-benefit-L reward-L * probability-opponent-demands-L + reward-L * probability-opponent-demands-M +
reward-L * probability-opponent-demands-H

let expected-benefit-M reward-M * probability-opponent-demands-L + reward-M * probability-opponent-demands-M +
0 * probability-opponent-demands-H

let expected-benefit-H reward-H * probability-opponent-demands-L + 0 * probability-opponent-demands-M + 0 *
probability-opponent -demands-H

;i calculate the best option

let possible-demands (list expected-benefit-L expected-benefit-M expected-benefit-H) ;; the list possible-demands
contains: [benefit if the agent chooses L , benefit if the agent chooses M , benefit if the agent chooses
H]

let best-option max possible-demands ;; the best option is the highest value in the list possible-demands

;i PARTICULAR CASE: TWO OR THREE OPTIONS RESULT IN THE SAME EXPECTED BENEFIT
if length filter [? = best-option] possible-demands > 1 ;i 1f two or three options produce the same benefit...
[
if item 0 possible-demands = item 1 possible-demands and item 1 possible-demands = item 2 possible-demands [report
one-of options] ;; benefit (low) = benefit (medium) = benefit (high) -> choose low, medium or high at random
if item 0 possible-demands = item 1 possible-demands [report one-of list low medium] ;i benefit (low) =
benefit (medium) -> choose low or medium at random
if item 0 possible-demands = item 2 possible-demands [report one-of list low high] ;i benefit (low) =
benefit (high) -> choose low or high at random
if item 1 possible-demands = item 2 possible-demands [report one-of list medium high] ;i benefit (medium)

= benefit (high) -> choose medium or high at random

31

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

;i GENERAL CASE: ONLY ONE OF THE THREE DEMANDS MAXIMIZE THE EXPECTED BENEFIT

if item 0 possible-demands = best-option [report low] ;7 if the first element in the list of possible demands
is the best option, then the agent chooses low

if item 1 possible-demands = best-option [report medium] ;7 1f the second element in the list of possible demands
is the best option, then the agent chooses medium

if item 2 possible-demands = best-option [report high] ;7 if the third element in the list of possible demands

is the best option, then the agent chooses high

if decision-rule = "Choose the best reply againts the opponents' most frequent demand"
[
let probability-opponent-demands-L (length filter [? = low] agents_memory) /m ;i count the number of appearances
of L in the agent's memory
let probability-opponent-demands-M (length filter [? = medium] agents_memory) /m ;; count the number of appearances
of M in the agent's memory
let probability-opponent-demands-H (length filter [? = high] agents_memory) /m ;i count the number of appearances

of H in the agent's memory

;; estimate the option that the opponent is likely to take

let possible-demands (list probability-opponent-demands-L probability-opponent -demands-M
probability-opponent-demands-H) ;; the list possible-demands contains: [probability that the opponent chooses
L , probability that the opponent chooses M , probability that the opponent choosess H]

let opponent-most-likely-demand max possible-demands ;; the opponent's most likely option is the highest value

in the list possible-demands

;7 PARTICULAR CASE: THERE IS A TIE IN THE NUMBER OF APPEARANCES OF low, medium or high
if length filter [? = opponent-most-likely-demand] possible-demands > 1 ;; there is a tie in the opponents' most

frequent demands in the previous matches

if item 0 possible-demands = item 1 possible-demands and item 1 possible-demands = item 2 possible-demands [report
one-of options] ;; frequency (low) = frequency (medium) = frequency (high) -> choose low, medium or high
at random

if item 0 possible-demands = item 1 possible-demands [report one-of list low medium] ;7 frequency (low)
= frequency (medium) -> choose low or medium at random

if item 0 possible-demands = item 2 possible-demands [report one-of list low high] ;7 frequency (low)
= frequency (high) -> choose low or high at random

if item 1 possible-demands = item 2 possible-demands [report one-of list medium high] ;7 frequency (medium)

= frequency (high) -> choose medium or high at random

;i GENERAL CASE: ONLY ONE OF THE THREE DEMANDS IS THE MOST FREQUENT

if item 0 possible-demands = opponent-most-likely-demand [report high] ;; if the first element in the list
of possible demands is the best option, then the agent chooses low

if item 1 possible-demands = opponent-most-likely-demand [report medium] ;7 1f the second element in the list
of possible demands is the best option, then the agent chooses medium

if item 2 possible-demands = opponent-most-likely-demand [report low] ;7 if the third element in the list of

possible demands is the best option, then the agent chooses high

to-report place-agents-xcor [agents_memory]

let appearances-of-L length filter [? = low] agents_memory ;; count the number of appearances of L in the agent's
memory

let appearances-of-M length filter [? = medium] agents_memory ;7 count the number of appearances of M in the agent's
memory

let appearances-of-H length filter [? = high] agents_memory ;7 count the number of appearances of H in the agent's
memory

;i GENERAL CASE (there is one or more appearances of H in the memory vector)
ifelse appearances-of-H > 0

[

let prop H L (appearances-of-H / (appearances-of-L + appearances-of-H)) ;; #H / (#L + #H)

let prop H M (appearances-of-H / (appearances-of-M + appearances-of-H)) ;; #H / (#M + #H)

let x-coordinate (1 / (((1 / prop_H L) + (1 / prop_H M))*(1 / sin 60) - (2 / tan 60))) * (((1 / prop_H L)*(1 / sin 60))-
(1 / tan 60)) * simplex-side-length

let shifted-x-coordinate x-coordinate - simplex-side-length / 2 ;7 we need to shift this as the triangle is centered
in (0,0)

report shifted-x-coordinate

;7 PARTICULAR CASE (if there are no H's in the memory vector, a determination appears in the general expression. We deal

32

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

with this case separately)

let prop_ L M (appearances-of-L / (appearances-of-L + appearances-of-M)) ;; #L / (#L + #M)

let x-coordinate prop L M * simplex-side-length

let shifted-x-coordinate x-coordinate - simplex-side-length / 2 ;7 we need to shift this as the triangle is centered
in (0,0)

report shifted-x-coordinate

to-report place-agents-ycor [agents_memory]

let appearances-of-L length filter [? = low] agents_memory ;; count the number of appearances of L in the agent's
memory

let appearances-of-M length filter [? = medium] agents_memory ;; count the number of appearances of M in the agent's
memory

let appearances-of-H length filter [? = high] agents_memory ;; count the number of appearances of H in the agent's
memory

GENERAL CASE (there is one or more appearances of H in the memory vector)

ifelse appearances-of-H > 0

[

let prop H L (appearances-of-H / (appearances-of-L + appearances-of-H)) ;i HH / (HL + #H)

let prop H M (appearances-of-H / (appearances-of-M + appearances-of-H)) ;i HH / (HM + #H)

let y-coordinate (1 / (((1 / prop H L) + (1 / prop H M))*(1 / sin 60) - (2 / tan 60))) * simplex-side-length

let shifted-y-coordinate y-coordinate - sqgrt(3) / 4 * simplex-side-length ;; we need to shift this as the triangle

is centered in (0,0)

report shifted-y-coordinate

;7 PARTICULAR CASE (if there are no H's in the memory vector, a determination appears in the general expression. We deal

with this case separately)

let y-coordinate 0
let shifted-y-coordinate y-coordinate - sqgrt(3) / 4 * simplex-side-length ;; we need to shift this as the triangle is
centered in (0,0)

report shifted-y-coordinate

to create-simplex

let M_xcor (- simplex-side-length / 2) ;7 x-coordinate of the left vertex of the simplex (M).
let M_ycor (- sqgrt(3) * simplex-side-length / 4) ;7 y-coordinate of the left vertex of the simplex (M).
let L xcor (simplex-side-length / 2) ;i x-coordinate of the right vertex of the simplex (L)
let L ycor (- sqgrt(3) * simplex-side-length / 4) ;7 y-coordinate of the right vertex of the simplex (L).
let H xcor 0 ;i x-coordinate of the top vertex of the simplex (H).

let H ycor (sqgrt(3) / 4 * simplex-side-length) ;; y-coordinate of the top vertex of the simplex (H).
let background-color [130 188 183] ;; define the background color

ask patches [set pcolor background-color] ;i set the background color

let surrounding-simplex-side-length simplex-side-length + 6 ;i set the size of the surrounding simplex.

if decision-rule = "Demand the option that maximizes the expected benefit"

[
;7 LEFT SIDE OF THE TRIANGLE: calculate the proportions of M and H in the memory vector so that the expected benefits

of choosing M and choosing H match when there are no appearances of L in the memory vector (le = left equilibrium)
let Ale (medium / high)
let Ble (1 -(medium / high))

;7 RIGHT SIDE OF THE TRIANGLE: calculate the proportions of L and H in the memory vector so that the expected benefits
of choosing L and choosing Hmatch when there are no appearances of M in the memory vector (re = right equilibrium)

let Cre (1 -(low / high))

let Apede (low / high)

;; LOWER SIDE OF THE TRIANGLE: calculate the proportions of L and M in the memory vector so that the expected benefits
of choosing L and choosing M match when there are no appearances of H in the memory vector (lwe = lower
equilibrium)

let Clwe (1 -(low / medium))

let Blwe (low / medium)

;7 calculate the proportions of L, M and H in the memory vector so that the expected benefit of choosing L, choosing

33

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL

D. J. Poza; F. A. Villafaiez

M and choosing H match

let Aep low / high ;7 value of A in the equilibrium point (ep)
let Bep low / medium - low / high ;7 value of B in the equilibrium point (ep)
let Cep 1 - low / medium ;7 value of C in the equilibrium point (ep)
let ep-x-coordinate-numerator 1 / ((Cep / (Aep + Cep)) * sin 60) - 1 / tan 60
let ep-x-coordinate-denominator ((1 / (Cep / (Rep + Cep)) + 1 / (Cep / (Bep + Cep))) * 1 / sin 60) - 2 / tan 60
let ep-x-coordinate ep-x-coordinate-numerator / ep-x-coordinate-denominator * simplex-side-length
let shifted-ep-x-coordinate ep-x-coordinate - simplex-side-length / 2
let ep-y-coordinate (1 / (((1 / (Cep / (Rep + Cep))) + (1 / (Cep / (Bep + Cep)))) * (1 / sin 60) - 2 / tan 60)) *
simplex-side-length
let shifted-ep-y-coordinate ep-y-coordinate - sqgrt(3) / 4 * simplex-side-length
;; DRAW THE DECISION BORDERS
create-turtles 1 [
i We only draw the decision borders if the memory type is not
endorsed. A\
ifelse memory-type = "Endorsed"
[
;i OUTER TRIANGLE
set size 0
setxy (surrounding-simplex-side-length / 2) (- sqgrt(3) / 4 * (surrounding-simplex-side-length

- (surrounding-simplex-side-length - simplex-side-length) / 4))
set color black set pen-size 5 pd

set heading 270 fd surrounding-simplex-side-length ;; move towards the left vertex

(M) A\

set heading 30 fd surrounding-simplex-side-length ;; move towards the top vertex
(H) A\

set heading 150 fd surrounding-simplex-side-length ;; move towards the right vertex
(L) A\

;i OUTER TRIANGLE

set size 0

setxy (surrounding-simplex-side-length / 2) (- sqgrt(3) / 4 * (surrounding-simplex-side-length
- (surrounding-simplex-side-length - simplex-side-length) / 4))

set color green set pen-size 5 pd

set heading 270 fd (surrounding-simplex-side-length * Clwe) set color vyellow fd
(surrounding-simplex-side-length * Blwe) ;; move towards the 1left vertex
(M) A\

set heading 30 fa (surrounding-simplex-side-length * Ble) set color red fd
(surrounding-simplex-side-length * Ale) ;; move towards the top vertex
(H) A\

set heading 150 fd (surrounding-simplex-side-length * Apede) set color green fd
(surrounding-simplex-side-length * Cre) pu ;; move towards the right vertex
(L) A\

;i DECISION BORDERS

;7 right border

setxy shifted-ep-x-coordinate shifted-ep-y-coordinate

set color black set pen-size 1 pd move-topatch (simplex-side-length /2 - Cre * simplex-side-length
* cos 60) / 4 * simplex-side-length) pu

;; left border

(Cre * simplex-side-length * sin 60 - sgrt(3)

setxy shifted-ep-x-coordinate shifted-ep-y-coordinate
(Ble * cos 60 -

/4

simplex-side-length *

sqrt (3)

set color black set pen-size 1 pd move-to patch

simplex-side-length / 2) (Ble * simplex-side-length * sin 60 -
simplex-side-length) pu

;; lower border

setxy shifted-ep-x-coordinate shifted-ep-y-coordinate

set colorblack set pen-size lpdmove-topatch (simplex-side-length/2 - Clwe * simplex-side-length)

(- sqrt(3) / 4 * simplex-side-length) pu

;; ADD A LABEL TO THE SIMPLEX VERTICES
[set plabel-color yellow set plabel "MEDIUM 50"]
[set Plabel-color 54 set plabel WORD "LOW " low]

[set Plabel-color RED set plabel WORD "HIGH " high]

ask patch (M_xcor - 5)
18) (L_ycor - 2)
ask patch (H_xcor + 4)

(M_ycor - 2)
ask patch (L_xcor +

(H_ycor + 6)

if decision-rule = "Choose the best reply againts the opponents' most frequent demand"

[

let ep-x-coordinate simplex-side-length / 2

34

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

let shifted-ep-x-coordinate ep-x-coordinate - simplex-side-length / 2

let ep-y-coordinate (sgrt (3) / 6) * simplex-side-length

let shifted-ep-y-coordinate ep-y-coordinate - (sqgrt (3) / 4) * simplex-side-length
let coordenada_equilibrio_y (sqgrt (3) / 6 - sqgrt (3) / 4) * simplex-side-length

;; DRAW THE DECISION BORDERS

create-turtles 1 [

\\

;i OUTER TRIANGLE
set size 0
setxy (surrounding-simplex-side-length / 2) (- sgrt(3) / 4 * (surrounding-simplex-side-length -
(surrounding-simplex-side-length - simplex-side-length) / 4))
set color green set pen-size 5 pd
set heading 270 fd (surrounding-simplex-side-length * 1 / 2) set color YELLOW fd
(surrounding-simplex-side-length * 1 / 2)
set heading 30 fa (surrounding-simplex-side-length * 1 / 2) set color RED fa
(surrounding-simplex-side-length * 1 / 2)
set heading 150 fa (surrounding-simplex-side-length * 1 / 2) set color 54 fa
(surrounding-simplex-side-length * 1 / 2) pu
;i DECISION BORDERS
set color black
set pen-size 1
;7 right border
setxy shifted-ep-x-coordinate shifted-ep-y-coordinate
pd move-to patch (simplex-side-length / 4) 0 pu
;; left border
setxy shifted-ep-x-coordinate shifted-ep-y-coordinate
pd move-to patch (- simplex-side-length / 4) 0 pu
;; lower border
setxy shifted-ep-x-coordinate shifted-ep-y-coordinate
pd move-to patch 0 (- sqgrt (3) / 4 * simplex-side-length)
die
]
;; ADD A LABEL TO THE SIMPLEX VERTICES
ask patch (M_xcor - 5) (M_ycor - 2) [set plabel-color yellow set plabel "MEDIUM 50"]
ask patch (L_xcor + 18) (L_ycor - 2) [set Plabel-color 54 set plabel WORD "LOW " low]
ask patch (H_xcor + 4) (H_ycor + 6) [set Plabel-color RED set plabel WORD "HIGH " high]

to check-stop-conditions

if memory-type != "Endorsed"
[
set equitable-equilibrium-stop-condition all? agents [length filter [? = medium] memory >= (1 - epsilon) * m]

set fractious-state-stop-condition all? agents [length filter [? = medium] memory <= epsilon * m]

if memory-type = "Endorsed"
[
let S (2 + (m=-1) *d) /2 *m
set equitable-equilibrium-stop-condition all? agents [check-endorsed-memory (memory) >= (1 - epsilon) * S

set fractious-state-stop-condition all? agents [check-endorsed-memory (memory) <= epsilon * S

;; IF THIS IS THE FIRST TIME THE SYSTEM HAS REACHED AN EQUITABLE EQUILIBRIUM
if equitable-equilibrium-stop-condition = true and equitable-equilibrium? = false
[
print (word "* * * The system has reached an equitable equilibrium in the iteration number " elapsed-iterations " *
* k)
set system-status "EQUITABLE EQUILIBRIUM" H display "EQUITABLE EQUILIBRIUM" in the system-status monitor
set equitable-equilibrium? true ;; now, the system is in equitable equilibrium
set equitable-equilibrium-at-least-once? true

1

;; the system has reached an equitable equilibrium at least once

;; IF THIS IS THE FIRST TIME THE SYSTEM HAS REACHED A FRACTIOUS STATE
if fractious-state-stop-condition and fractious-state? = false
[
print (word "* * * The system has reached a fractious state in the iteration number " elapsed-iterations " * * %)
set system-status "FRACTIOUS STATE" ;; display "FRACTIOUS STATE" in the system-status monitor
set fractious-state? true ;; now, the system is in fractious state
set fractious-state-at-least-once? true

1

;; the system has reached a fractious state at least once

;; IF THE SYSTEM LEAVES THE EQUITABLE EQUILIBRIUM...

35

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

if equitable-equilibrium? = true and not equitable-equilibrium-stop-condition
[
print (word "* * * The system has left the equitable equilibrium in the iteration number " elapsed-iterations " * *
')

set equitable-equilibrium? false

;; IF THE SYSTEM LEAVES THE FRACTIOUS STATE...
if fractious-state? = true and not fractious-state-stop-condition
[
print (word "* * * The system has left the fractious state in the iteration number " elapsed-iterations " * *)
set fractious-state? false
]

end

to-report check-endorsed-memory [agents-memory]
let g 0
(foreach agents-memory endorsed-memory-weights [if ?1 = medium [set g g + ?2]])
report gq ;i returns the number of elements equal to medium in the agent's memory (each appearance of medium in the
memory set is multiplied by the weight of the position in which it appears)

end

2-AGENT TYPES BARGAINING MODEL (TAG MODEL)

breed [agents agent]

breed [images image]

agents-own [id tag intertype-memory intratype-memory]

images-own [id tag intertype-memory intratype-memory]

globals
[
options ;i list that contains the following values - according to the chosen payoff matrix:
[low medium high]
medium ;i numeric value assigned to the 'medium' demand
high ;i numeric value assigned to the 'high' demand

simplex-side-length ;i length of the simplex side
agents-list ;i list that contains all the agents in the population

elapsed-iterations ;i number of elapsed iterations since the simulation was started

intratype-equitable-equilibrium-stop-condition ;i conditions forequitable equilibriumin the case of intratype matches
intratype-fractious-state-stop-condition ;i conditions for fractious state in the case of intratype matches
intratype-segregation-stop-condition ;; conditions for equitable equilibrium for the agents with one colour

and fractious state for the agents with another colour

intertype-equitable-equilibrium-stop-condition ;i conditions forequitable equilibriumin the case of intertype matches
intertype-segregation-stop-condition ;i the agents with one colour choose H and the agents with the other

colour choose L

intratype-simulation-finished? ;i booleanvariable thatwillbe trueif the simulationis finishedinthe intratype
simplex

intertype-simulation-finished? ;i booleanvariable thatwillbe trueif the simulationis finishedinthe intertype
simplex

intratype-status ;i this variable contains the message shown in the intratype-status monitor, in

the screen interface.
intertype-status ;i this variable contains the message shown in the intertype-status monitor, in

the screen interface.

endorsed-memory-weights ;; this list contains the weights assigned to each term in the endorsed memory
set
shift ;; distance from each symplex to the origin

to setup

print "" ;: leave a black line in the command center
clear-all ;; reset variables
;; DEFINE THE REWARDS ACCORDING TO THE SELECTED PAYOFF MATRIX (the value for the lowest reward -low- is chosen in the

interface screen)

36

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

set high 100 - low ;7 set the value assigned to high
set medium 50 ;; set the value assigned to medium
set options (list low medium high) ;; create a list which contains the values assigned to low, medium and high

according to the selected payoff matrix

;i PRINT THE PAYOFF MATRIX ACCORDING TO THE SELECTED VALUE FOR LOW

output-print " L M H "

output-type " L | (" output-type low output-type "," output-type low output-type ") | (" output-type low output-type ","
output-type medium output-type ") | (" output-type low output-type "," output-type high output-print ")|"

output-type " M | (" output-type medium output-type "," output-type low output-type ") | (" output-type medium output-type
", " output-type medium output-print ")| (0,0) |"

output-type " H | (" output-type high output-type "," output-type low output-print ")| (0,0) | (0,0) |"

;i CREATE THE SIMPLEX
set simplex-side-length 100 ;i set the simplex size
set shift 75 ;; distance from each symplex to the origin
create-simplex ;7 call the procedure 'create-simplex'
;i CREATE A POPULATION OF n AGENTS
create-agents n
[
set id who ;; attach an id to each agent to monitor its position
in both simplexes
set shape "dot" ;i set the agent's shape
set size 4 ;; set the agent's size
set color black ;i set the agent's colour
if label-on-agents? [set label who] ;i create a label with the id of each agent
if memory-type = "Standard" [set intratype-memoryn-valuesm [one-of options] set intertype-memory intratype-memory]
create an m-size memory with random values for each agent
if memory-type = "Endorsed" [set intratype-memoryn-valuesm [one-of options] set intertype-memory intratype-memory] i
create an m-size memory with random values for each agent
if memory-type = "Progressive" [set intratype-memoryn-values 1l [one-of options] set intertype-memory intratype-memory] ;;
initialize the memory with just one value choosen at random
set xcorplace-agents-xcor (intratype-memory) - shift ;i placetheagents inthe simplexaccording
to their memory status (x-coordinate)
setycorplace-agents-ycor (intratype-memory) ;iplacetheagentsinthe simplexaccording

to their memory status (y-coordinate)

;7 (n/2) AGENTS TURN ORANGE

ask n-of (n / 2) agents [set color orange]

;i ATTACH A LABEL (COLOUR) TO EACH PLAYER

ask agents [set tag [color] of self]

;i CREATE n 'images' and place them on the right simplex (intertype)

ask agents [hatch-images 1 [set shape "dot" set xcor place-agents-xcor (intertype-memory) + shift set ycor place-agents-ycor

(intertype-memory)]

;i SET THE INITIAL VALUE OF SOME OF THE GLOBALS VARIABLES
set intertype-status "---------- " ;; this message is shown in the intertype-status monitor until
an equitable equilibrium or a fractious state is reached

set intratype-status "---------- " ;; this message is shown in the intratype-status monitor until
an equitable equilibrium or a fractious state is reached

set intratype-simulation-finished? false ;; one of the conditions to stop the simulation

set intertype-simulation-finished? false ;; one of the conditions to stop the simulation

;; CREATE A LIST WITH ALL THE AGENTS IN THE POPULATION

set agents-list sort agents ;; turns the agentset into a list

;i CREATE A LIST OF WEIGHTS FOR THE ENDORSED MEMORY
if memory-type = "Endorsed"
[

let weights [] ;7 list of weights
let current-weight 1
let i 0

;7 lowest weight
;i counter (loop)
while [i < m]

[

set weights fput current-weight weights ;; add the current weight to the list of weights
set current-weight current-weight + d ;i increase the weight for the next element
set 1 1 + 1 ;7 increase the loop counter

]

set endorsed-memory-weights weights ;7 update the global variable

37

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

if memory-type != "Endorsed" [set d 0] ;7 1f the memory is not 'endorsed', 'd' (difference common in the arithmetic
progression which is followed by the weights of each memory position makes no sense here

if decision-rule = "Choose the best reply againts the opponents' most frequent demand" and memory-type = "Endorsed"
[beep user-message "This decision rule is not compatible with an endorsed memory"] ;; displays a warning

in a pop-up window

end
to go
set elapsed-iterations 0 ;7 initialize the elapsed-iterations counter
while [elapsed-iterations < number of iterations] ;7 we run as many iterations as the value of the variable

number_of iterations

let players agents-list ;; retrieve the original list of agents
repeat (length agents-list) / 2 ;; the number of matches in each iteration is half the number

of agents

;i 1. TAKE TWO PLAYERS AT RANDOM FROM THE LIST OF AGENTS

let playerl one-of players ;7 choose one agent from the list of agents at random

set players remove playerl players ;; delete this agent so that it can't be chosen again during
this iteration

let player2 one-of players ;7 choose one agent from the list of agents at random

set players remove player2 players ;; delete this agent so that it can't be chosen again during

this iteration

;i 2. EACH AGENT TAKES A DECISION TAKING INTO ACCOUNT HIS MEMORIES ABOUT PREVIOUS MATCHES
let playerl-decision 0 ;; define variable

let player2-decision 0 ;; define variable

ifelse [tag] of playerl = [tag] of player2
[
;i 2.1 INTRATYPE MATCHES (agent 1's tag = agent 2's tag)

set playerl-decision take-decision ([intratype-memory] of playerl) ;; player 1 takes his decision

set player2-decision take-decision ([intratype-memory] of player2) ;; player 2 takes his decision

;i 2.2 INTERTYPE MATCHES (agent 1's tag != agent 2's tag)

set playerl-decision take-decision ([intertype-memory] of playerl) ;; player 1 takes his decision

player 2 takes his decision

set player2-decision take-decision ([intertype-memory] of player2) ;

;i 3. EACH AGENT STORES THE OPPONENT'S DECISION IN HIS MEMORY
ifelse [tag] of playerl = [tag] of player2
[
;i 3.1 INTRATYPE MATCHES (agent 1's tag = agent 2's tag)
ask playerl [set intratype-memory fput player2-decision intratype-memory] ;i player 1 stores player
2's decision in his intratype-memory
ask player2 [set intratype-memory fput playerl-decision intratype-memory] ;i player 2 stores player

1's decision in his intratype-memory

if memory-type = "Standard" or memory-type = "Endorsed" [ask playerl [set intratype-memory but-last
intratype-memory]] ;; Standard and endorsed memory: player 1 deletes his oldest
value in his memory.

if memory-type = "Progressive" andlength [intratype-memory] of playerl>m [askplayerl [set intratype-memory
but-last intratype-memory]] ;i Progressive memory: player 1 deletes his oldest value in

his memory when the m-size memory is reached

if memory-type = "Standard" or memory-type = "Endorsed" [ask player2 [set intratype-memory but-last
intratype-memory]] ;7 Standard and endorsed memory: player 2 deletes his oldest
value in his memory.

if memory-type = "Progressive" andlength [intratype-memory] of player2>m [askplayer2 [set intratype-memory
but-last intratype-memory]] ;i Progressive memory: player 2 deletes his oldest value in

his memory when the m-size memory is reached

;i 3.2 INTERTYPE MATCHES (agent 1's tag != agent 2's tag)
ask playerl [set intertype-memory fput player2-decision intertype-memory] ;i player 1 stores player
2's decision in his intertype-memory
ask player2 [set intertype-memory fput playerl-decision intertype-memory] ;i player 2 stores player

1's decision in his intertype-memory

if memory-type = "Standard" or memory-type = "Endorsed" [ask playerl [set intertype-memory but-last

intertype-memory]] ;7 Standard and endorsed memory: player 1 deletes his oldest value

in his memory.

38

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

if memory-type = "Progressive" andlength [intertype-memory] of playerl >m [askplayerl [set intertype-memory
but-last intertype-memory]] ;i Progressive memory: player 1 deletes his oldest value in his memory

when the m-size memory is reached

if memory-type = "Standard" or memory-type = "Endorsed" [ask player2 [set intertype-memory but-last
intertype-memory]] ;7 Standard and endorsed memory: player 2 deletes his oldest value
in his memory.

if memory-type = "Progressive" andlength [intertype-memory] of player2 >m [askplayer2 [set intertype-memory
but-last intertype-memory]] ;i Progressive memory: player 2 deletes his oldest value in his memory

when the m-size memory is reached

;i 4. UPDATE THE PLAYERS' IMAGES (RIGHT SIMPLEX)
ask images with [id = [id] of playerl] [set intertype-memory [intertype-memory] of playerl set intratype-memory
[intratype-memory] of playerl]
ask images with [id = [id] of player2] [set intertype-memory [intertype-memory] of player2 set intratype-memory
[intratype-memory] of player2]
;i 5. UPDATE THE POSITION OF THE TWO AGENTS IN THE SIMPLEX ACCORDING TO THE NEW MEMORY STATUS
ifelse [tag] of playerl = [tag] of player2
[
;7 3.1 INTRATYPE MATCHES (agent 1's tag = agent 2's tag): The left simplex (intratype) changes; the right simplex
(intertype) doesn't.
ask playerl [setxy place-agents-xcor (intratype-memory) - shift place-agents-ycor (intratype-memory)] ;i place
the agents in the simplex according to their memory status (x-coordinate)
ask player2 [setxy place-agents-xcor (intratype-memory) - shift place-agents-ycor (intratype-memory)] ;i place

the agents in the simplex according to their memory status (y-coordinate)

;7 3.2 INTERTYPE MATCHES (agent 1's tag != agent 2's tag) : The right simplex (intertype) changes; the left simplex
(intratype) doesn't.

ask images with [id = [id] of playerl] [setxy place-agents-xcor (intertype-memory) + shift place-agents-ycor
(intertype-memory)] ;7 place the agents in the simplex according to their memory status (x-coordinate)
ask images with [id = [id] of player2] [setxy place-agents-xcor (intertype-memory) + shift place-agents-ycor
(intertype-memory)] ;7 place the agents in the simplex according to their memory status (y-coordinate)
]
]
set elapsed-iterations elapsed-iterations + 1 ;; the current iteration has finished
tick ;7 increase the tick counter (number of elapsed iterations)
check-stop-conditions ;7 call the procedure 'check-stop-conditions'

if intratype-simulation-finished? and intertype-simulation-finished? [print "* * * SIMULATION FINISHED * * *" stop] ;;

if the system has reached one of the five scenarios in this iteration, the simulation stops now.

if elapsed-iterations = number_of_ iterations ;7 when the maximum number of iterations is reached, a message

is shown and the simulation finishes.

print "% % % SIMULATION FINISHED: The system has reached the maximum number of iterations. * * *"
;71f equitable-equilibrium-at-least-once? = false and fractious-state-at-least-once? = false [set system-status
"SIMULATION FINISHED" print "* * * No equilibrium was reached in the system. * * *"]

stop

end
to-report take-decision [agents_memory]

let random-number random-float 1 ;; create a random number

ifelse random-number < epsilon

;7 1f the random number is lower than epsilon, the decision is taken randomly

[

report one-of options

;7 1f the random number is lower than epsilon, the decision rule is 'rational'

[

if decision-rule = "Demand the option that maximizes the expected benefit"

[

let probability-opponent-demands-L (length filter [? = low] agents_memory) /m ;i count the number of appearances

of L in the agent's memory

39

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

let probability-opponent-demands-M (length filter [? = medium] agents_memory) /m ;; count the number of appearances
of M in the agent's memory
let probability-opponent-demands-H (length filter [? = high] agents_memory) /m ;i count the number of appearances

of H in the agent's memory

let reward-L low ;i set the reward assigned to low
let reward-M medium ;i set the reward assigned to medium
let reward-H high ;i set the reward assigned to high

;i the agent calculates the expected benefit if he chooses L, M or H

let expected-benefit-L reward-L * probability-opponent-demands-L + reward-L * probability-opponent-demands-M +
reward-L * probability-opponent-demands-H

let expected-benefit-M reward-M * probability-opponent-demands-L + reward-M * probability-opponent-demands-M +
0 * probability-opponent-demands-H

let expected-benefit-H reward-H * probability-opponent-demands-L + 0 * probability-opponent-demands-M + 0 *
probability-opponent -demands-H

;i calculate the best option

let possible-demands (list expected-benefit-L expected-benefit-M expected-benefit-H) ;; the list possible-demands
contains: [benefit if the agent chooses L , benefit if the agent chooses M , benefit if the agent chooses
H]

let best-option max possible-demands ;; the best option is the highest value in the list possible-demands

;i PARTICULAR CASE: TWO OR THREE OPTIONS RESULT IN THE SAME EXPECTED BENEFIT
if length filter [? = best-option] possible-demands > 1 ;i 1f two or three options produce the same benefit...
[
if item 0 possible-demands = item 1 possible-demands and item 1 possible-demands = item 2 possible-demands [report
one-of options] ;; benefit (low) = benefit (medium) = benefit (high) -> choose low, medium or high at random
if item 0 possible-demands = item 1 possible-demands [report one-of list low medium] ;i benefit (low) = benefit
(medium) -> choose low or medium at random
if item 0 possible-demands = item 2 possible-demands [report one-of list low high] ;i benefit (low) = benefit
(high) -> choose low or high at random
if item 1 possible-demands = item 2 possible-demands [report one-of list medium high] ;i benefit (medium) =

benefit (high) -> choose medium or high at random

;i GENERAL CASE: ONLY ONE OF THE THREE DEMANDS MAXIMIZE THE EXPECTED BENEFIT

if item 0 possible-demands = best-option [report low] ;i if the first element in the list of possible demands
is the best option, then the agent chooses low

if item 1 possible-demands = best-option [report medium] ;i 1f the second element in the list of possible demands
is the best option, then the agent chooses medium

if item 2 possible-demands = best-option [report high] ;; if the third element in the list of possible demands
is the best option, then the agent chooses high

if decision-rule = "Demand the option that maximizes the expected benefit" and memory-type = "Endorsed"
[
let 1 0 ;i set a counter for the while loop: O<=i<memory-size
let L O ;i L is the number of appearances of low endorsed by the position that

they appear in the memory
let Me 0 ;i Me is the number of appearances of medium endorsed by the position
that they appear in the memory
let HO ;i H i1s the number of appearances of high endorsed by the position that
they appear in the memory
let highest-weight 1 + (m - 1) * d ;i the highest weight is the last term in an arithmetic progression
with common difference 'd’
let current-weight highest-weight ;i the value of current-weight decreases as we move towards the oldest
values stored in the memory
while [i < length agents_memory]
[
if item i agents_memory = low [set L L + current-weight] ;i the value of L is increased if the current
memory position is low; current-weight decreases as we move towards the oldest values stored in the memory
if item i agents memory = medium [set Me Me + current-weight] ;; the value of Me is increased if the current
memory position is low or medium; current-weight decreases as we move towards the oldest values stored in
the memory
if item i agents_memory = high [set H H + current-weight] ;i the value of L is increased if the current
memory position is low; current-weight decreases as we move towards the oldest values stored in the memory
set 1 i + 1 ;i increase the array position
set current-weight current-weight - d ;i substract the common difference from the current-weight
to obtain a new weight for the next iteration
]
let S (2 + (m - 1) *d) /2 *m

let probability-opponent-demands-L L / S ;i count the number of appearances of L in the agent's memory
let probability-opponent-demands-M Me / S ;i count the number of appearances of Me in the agent's memory
let probability-opponent-demands-H H / S ;i count the number of appearances of H in the agent's memory

40

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

let reward-L low ;i set the reward assigned to low
let reward-M medium ;i set the reward assigned to medium
let reward-H high ;i set the reward assigned to high

;i the agent calculates the expected benefit if he chooses L, M or H

let expected-benefit-L reward-L * probability-opponent-demands-L + reward-L * probability-opponent-demands-M +
reward-L * probability-opponent-demands-H

let expected-benefit-M reward-M * probability-opponent-demands-L + reward-M * probability-opponent-demands-M +
0 * probability-opponent-demands-H

let expected-benefit-H reward-H * probability-opponent-demands-L + 0 * probability-opponent-demands-M + 0 *

probability-opponent -demands-H

;i calculate the best option

let possible-demands (list expected-benefit-L expected-benefit-M expected-benefit-H) ;; the list possible-demands
contains: [benefit if the agent chooses L , benefit if the agent chooses M , benefit if the agent chooses
H]

let best-option max possible-demands ;; the best option is the highest value in the list possible-demands

;i PARTICULAR CASE: TWO OR THREE OPTIONS RESULT IN THE SAME EXPECTED BENEFIT
if length filter [? = best-option] possible-demands > 1 ;i 1f two or three options produce the same benefit...
[
if item 0 possible-demands = item 1 possible-demands and item 1 possible-demands = item 2 possible-demands [report
one-of options] ;; benefit (low) = benefit (medium) = benefit (high) -> choose low, medium or high at random
if item 0 possible-demands = item 1 possible-demands [report one-of list low medium] ;i benefit (low) =
benefit (medium) -> choose low or medium at random
if item 0 possible-demands = item 2 possible-demands [report one-of list low high] ;i benefit (low) =
benefit (high) -> choose low or high at random
if item 1 possible-demands = item 2 possible-demands [report one-of list medium high] ;i benefit (medium)

= benefit (high) -> choose medium or high at random

;i GENERAL CASE: ONLY ONE OF THE THREE DEMANDS MAXIMIZE THE EXPECTED BENEFIT

if item 0 possible-demands = best-option [report low] ;i if the first element in the list of possible demands
is the best option, then the agent chooses low

if item 1 possible-demands = best-option [report medium] ;i 1f the second element in the list of possible demands
is the best option, then the agent chooses medium

if item 2 possible-demands = best-option [report high] ;i if the third element in the list of possible demands

is the best option, then the agent chooses high

if decision-rule = "Choose the best reply againts the opponents' most frequent demand"

[

let probability-opponent-demands-L (length filter [? = low] agents_memory) /m ;i count the number of appearances
of L in the agent's memory

let probability-opponent-demands-M (length filter [? = medium] agents_memory) /m ;; count the number of appearances
of M in the agent's memory

let probability-opponent-demands-H (length filter [? = high] agents_memory) /m ;i count the number of appearances

of H in the agent's memory

;; estimate the option that the opponent is likely to take

let possible-demands (list probability-opponent-demands-L probability-opponent -demands-M
probability-opponent-demands-H) ;; the list possible-demands contains: [probability that the opponent chooses
L , probability that the opponent chooses M , probability that the opponent choosess H]

let opponent-most-likely-demand max possible-demands ;; the opponent's most likely option is the highest value

in the list possible-demands

;i PARTICULAR CASE: THERE IS A TIE IN THE NUMBER OF APPEARANCES OF low, medium or high
if length filter [? = opponent-most-likely-demand] possible-demands > 1 ;i there is a tie in the opponents' most

frequent demands in the previous matches

if item 0 possible-demands = item 1 possible-demands and item 1 possible-demands = item 2 possible-demands [report
one-of options] ;; frequency (low) = frequency (medium) = frequency (high) -> choose low, medium or high
at random

if item 0 possible-demands = item 1 possible-demands [report one-of list low medium] ;i frequency (low)
= frequency (medium) -> choose low or medium at random

if item 0 possible-demands = item 2 possible-demands [report one-of list low high] ;i frequency (low)
= frequency (high) -> choose low or high at random

if item 1 possible-demands = item 2 possible-demands [report one-of list medium high] ;i frequency (medium)

= frequency (high) -> choose medium or high at random

;i GENERAL CASE: ONLY ONE OF THE THREE DEMANDS IS THE MOST FREQUENT
if item 0 possible-demands = opponent-most-likely-demand [report high] ;i if the first element in the list
of possible demands is the best option, then the agent chooses low

if item 1 possible-demands = opponent-most-likely-demand [report medium] ;i 1f the second element in the list

41

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

of possible demands is the best option, then the agent chooses medium
if item 2 possible-demands = opponent-most-likely-demand [report low] ;; if the third element in the list of

possible demands is the best option, then the agent chooses high

to-report place-agents-xcor [agents_memory]

let appearances-of-L length filter [? = low] agents_memory ;; count the number of appearances of L in the agent's
memory

let appearances-of-M length filter [? = medium] agents_memory ;7 count the number of appearances of M in the agent's
memory

let appearances-of-H length filter [? = high] agents_memory ;7 count the number of appearances of H in the agent's
memory

;i GENERAL CASE (there is one or more appearances of H in the memory vector)
ifelse appearances-of-H > 0

[

let prop H L (appearances-of-H / (appearances-of-L + appearances-of-H)) ;; #H / (#L + #H)

let prop H M (appearances-of-H / (appearances-of-M + appearances-of-H)) ;; #H / (#M + #H)

let x-coordinate (1 / (((1 / prop_H L) + (1 / prop H M))*(1 / sin 60) - (2 / tan 60))) * (((1 / prop_H L)*(1 / sin 60))-
(1 / tan 60)) * simplex-side-length

let shifted-x-coordinate x-coordinate - simplex-side-length / 2 ;7 weneed to shift this as the triangle is centered
in (0,0)

report shifted-x-coordinate

;7 PARTICULAR CASE (if there are no H's in the memory vector, a determination appears in the general expression. We deal

with this case separately)

let prop_ L M (appearances-of-L / (appearances-of-L + appearances-of-M)) ;; #L / (#L + #M)

let x-coordinate prop L M * simplex-side-length

let shifted-x-coordinate x-coordinate - simplex-side-length / 2 ;7 weneed to shift this as the triangle is centered
in (0,0)

report shifted-x-coordinate

to-report place-agents-ycor [agents_memory]

let appearances-of-L length filter [? = low] agents_memory ;; count the number of appearances of L in the agent's
memory

let appearances-of-M length filter [? = medium] agents_memory ;; count the number of appearances of M in the agent's
memory

let appearances-of-H length filter [? = high] agents_memory ;; count the number of appearances of H in the agent's
memory

;i GENERAL CASE (there is one or more appearances of H in the memory vector)
ifelse appearances-of-H > 0

[

let prop H L (appearances-of-H / (appearances-of-L + appearances-of-H)) ;i HH / (HL + #H)

let prop H M (appearances-of-H / (appearances-of-M + appearances-of-H)) ;i HH / (HM + #H)

let y-coordinate (1 / (((1 / prop H L) + (1 / prop H M))*(1 / sin 60) - (2 / tan 60))) * simplex-side-length

let shifted-y-coordinate y-coordinate - sqgrt(3) / 4 * simplex-side-length ;; we need to shift this as the triangle

is centered in (0,0)

report shifted-y-coordinate

;7 PARTICULAR CASE (if there are no H's in the memory vector, a determination appears in the general expression. We deal

with this case separately)

let y-coordinate 0
let shifted-y-coordinate y-coordinate - sqgrt(3) / 4 * simplex-side-length ;; we need to shift this as the triangle is
centered in (0,0)

report shifted-y-coordinate

to create-simplex
;i INTRATYPE SIMPLEX (LEFT TRIANGLE)

42

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL

D. J. Poza; F. A. Villafaiiez

let M1_xcor (- simplex-side-length / 2 - shift) ;7 x-coordinate of the left vertex of the left simplex (M).
let M1_ycor (- sqrt(3) * simplex-side-length / 4) ;7 y-coordinate of the left vertex of the left simplex (M).
let Ll_xcor (simplex-side-length / 2 - shift) ;7 x-coordinate of the right vertex of the left simplex (L).
let L1_ycor (- sqrt(3) * simplex-side-length / 4) ;7 y-coordinate of the right vertex of the left simplex (L) .
let H1_xcor 0 - shift ;i x-coordinate of the top vertex of the left simplex (H).
let H1_ycor (sqrt(3) / 4 * simplex-side-length) ;i y-coordinate of the top vertex of the left simplex (H).

INTERTYPE SIMPLEX (RIGHT TRIANGLE)

let M2_xcor (- simplex-side-length / 2 + shift) ;7 x-coordinate of the left vertex of the right simplex (M) .

let M2_ycor (- sqrt(3) * simplex-side-length / 4) ;7 y-coordinate of the left vertex of the right simplex (M) .

let L2_xcor (simplex-side-length / 2 + shift) ;i x-coordinate of the right vertex of the right simplex (L) .

let L2_ycor (- sqrt(3) * simplex-side-length / 4) ;i y-coordinate of the right vertex of the right simplex
(L) .

let H2_xcor 0 + shift ;i x-coordinate of the top vertex of the right simplex (H)

let H2_ycor (sgrt(3) / 4 * simplex-side-length) ;7 y-coordinate of the top vertex of the right simplex (H).

ADD A LABEL TO EACH SIMPLEX

ask patch (H1_xcor + 8) (Hl_ycor + 17) [set plabel-color white set plabel "INTRATYPE"] ;; LEFT SIMPLEX
ask patch (H1_xcor + 9) (Hl_ycor + 12) [set plabel-color white set plabel " (same type)"] ;; LEFT SIMPLEX
ask patch (H2_xcor + 9) (H2_ycor + 17) [set plabel-color white set plabel "INTERTYPE"] ;7 RIGHT SIMPLEX
ask patch (H2_xcor + 11) (H2_ycor + 12) [set plabel-color white set plabel "(different type)"] ;7 RIGHT SIMPLEX
let background-color [130 188 183] ;; define the background color

ask patches [set pcolor background-color] ;i set the background color

let surrounding-simplex-side-length simplex-side-length + 6 ;i set the size of the surrounding simplex.
if decision-rule = "Demand the option that maximizes the expected benefit"
[
;7 LEFT SIDE OF THE TRIANGLE: calculate the proportions of M and H in the memory vector so that the expected benefits
of choosing M and choosing H match when there are no appearances of L in the memory vector (le = left equilibrium)
(medium / high)
(1 -(medium / high))

let Ale
let Ble

;7 RIGHT SIDE OF THE TRIANGLE: calculate the proportions of L and H in the memory vector so that the expected benefits
of choosing L and choosing Hmatch when there are no appearances of M in the memory vector (re = right equilibrium)

(1 -(low / high))

(low / high)

let Cre
let Apede

;; LOWER SIDE OF THE TRIANGLE: calculate the proportions of L and M in the memory vector so that the expected benefits

of choosing L and choosing M match when there are no appearances of H in the memory vector (lwe = lower
equilibrium)

let Clwe (1 -(low / medium))

let Blwe (low / medium)

;7 calculate the proportions of L, M and H in the memory vector so that the expected benefit of choosing L, choosing
M and choosing H match
;7 value of A in the equilibrium point

Aep low / high (ep)

let Bep low / medium - low / high ;7 value of B in the equilibrium point (ep)
let Cep 1 - low / medium ;7 value of C in the equilibrium point (ep)
let ep-x-coordinate-numerator 1 / ((Cep / (Aep + Cep)) * sin 60) - 1 / tan 60
let ep-x-coordinate-denominator ((1 / (Cep / (Rep + Cep)) + 1 / (Cep / (Bep + Cep))) * 1 / sin 60) - 2 / tan 60
let ep-x-coordinate ep-x-coordinate-numerator / ep-x-coordinate-denominator * simplex-side-length
let shifted-ep-xl-coordinate ep-x-coordinate - simplex-side-length / 2 - shift ;; left triangle
let shifted-ep-x2-coordinate ep-x-coordinate - simplex-side-length / 2 + shift ;; right triangle
let ep-y-coordinate (1 / (((1 / (Cep / (Rep + Cep))) + (1 / (Cep / (Bep + Cep)))) * (1 / sin 60) - 2 / tan 60)) *
simplex-side-length
let shifted-ep-y-coordinate ep-y-coordinate - sqgrt(3) / 4 * simplex-side-length
;; DRAW THE DECISION BORDERS
create-turtles 1 [
i We only draw the decision borders if the memory type is not
endorsed. P\
ifelse memory-type = "Endorsed"
[
;i LEFT SIMPLEX OUTER TRIANGLE
set size 0
setxy (surrounding-simplex-side-length / 2 - shift) (- sqrt (3) / 4 *
(surrounding-simplex-side-length - (surrounding-simplex-side-length - simplex-side-length) / 4))

set color black set pen-size 5 pd

set heading 270 fd surrounding-simplex-side-length ;; move towards the left vertex (M)
set heading 30 fd surrounding-simplex-side-length ;;move towards the top vertex (H)
set heading 150 fd surrounding-simplex-side-length ;; move towards the right vertex (L)
pu

43

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

;i RIGHT SIMPLEX OUTER TRIANGLE

set size 0

setxy (surrounding-simplex-side-length / 2 + shift) (- sqrt (3) / 4 *
(surrounding-simplex-side-length - (surrounding-simplex-side-length - simplex-side-length) / 4))

pd

set color black set pen-size 5 pd

set heading 270 fd surrounding-simplex-side-length ;; move towards the left vertex (M)

set heading 30 fd surrounding-simplex-side-length ;; move towards the top vertex (H)

set heading 150 fd surrounding-simplex-side-length ;; move towards the right vertex (L)

;i LEFT SIMPLEX OUTER TRIANGLE

set size 0

setxy (surrounding-simplex-side-length / 2 - shift) (- sqrt (3) / 4 *
(surrounding-simplex-side-length - (surrounding-simplex-side-length -
simplex-side-length) / 4))

set color green set pen-size 5 pd

set heading 270 fd (surrounding-simplex-side-length * Clwe) set color vyellow fd

(surrounding-simplex-side-length * Blwe) ;; move towards the 1left vertex
(M) A\

set heading 30 fa (surrounding-simplex-side-length * Ble) set color red fd
(surrounding-simplex-side-length * Ale) ;; move towards the top vertex
(H) \\

set heading 150 fd (surrounding-simplex-side-length * Apede) set color green fd
(surrounding-simplex-side-length * Cre) pu ;; move towards the right vertex
(L) A\

pu

;i RIGHT SIMPLEX OUTER TRIANGLE

set size 0

setxy (surrounding-simplex-side-length / 2 + shift) (- sgrt (3) / 4 *
(surrounding-simplex-side-length - (surrounding-simplex-side-length -
simplex-side-length) / 4))

pd

set color green set pen-size 5 pd

set heading 270 fd (surrounding-simplex-side-length * Clwe) set color vyellow fd

(surrounding-simplex-side-length * Blwe) ;; move towards the 1left vertex
(M) A\

set heading 30 fa (surrounding-simplex-side-length * Ble) set color red fd
(surrounding-simplex-side-length * Ale) ;; move towards the top vertex
(H) \\

set heading 150 fd (surrounding-simplex-side-length * Apede) set color green fd
(surrounding-simplex-side-length * Cre) pu ;; move towards the right vertex
(L) A\\

;; LEFT SIMPLEX DECISION BORDERS

;7 right border

setxy shifted-ep-xl-coordinate shifted-ep-y-coordinate

set color black set pen-size 1 pd move-topatch (simplex-side-length /2 - Cre * simplex-side-length
* cos 60 - shift) (Cre * simplex-side-length * sin 60 - sqrt(3) / 4 * simplex-side-length)
pu

;; left border

setxy shifted-ep-xl-coordinate shifted-ep-y-coordinate

set color black set pen-size 1 pd move-to patch (Ble * simplex-side-length * cos 60 -
simplex-side-length / 2 - shift) (Ble * simplex-side-length * sin 60 - sgrt(3) / 4 *
simplex-side-length) pu

;; lower border

setxy shifted-ep-xl-coordinate shifted-ep-y-coordinate

set colorblack set pen-size 1l pdmove-topatch (simplex-side-length /2 - Clwe * simplex-side-length

- shift) (- sqrt(3) / 4 * simplex-side-length) pu

;i RIGHT SIMPLEX DECISION BORDERS

;7 right border

setxy shifted-ep-x2-coordinate shifted-ep-y-coordinate

set color black set pen-size 1 pd move-topatch (simplex-side-length /2 - Cre * simplex-side-length
* cos 60 + shift) (Cre * simplex-side-length * sin 60 - sqrt(3) / 4 * simplex-side-length)
pu

;; left border

setxy shifted-ep-x2-coordinate shifted-ep-y-coordinate

set color black set pen-size 1 pd move-to patch (Ble * simplex-side-length * cos 60 -
simplex-side-length / 2 + shift) (Ble * simplex-side-length * sin 60 - sgrt(3) / 4 *
simplex-side-length) pu

;; lower border

setxy shifted-ep-x2-coordinate shifted-ep-y-coordinate

set colorblack set pen-size 1l pdmove-topatch (simplex-side-length /2 - Clwe * simplex-side-length

44

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

+ shift) (- sqrt(3) / 4 * simplex-side-length) pu

;; ADD A LABEL TO THE SIMPLEX VERTICES
ask patch (M1_xcor - 5) (Ml_ycor - 2) [set plabel-color yellow set plabel "MEDIUM 50"]
ask patch (Ll_xcor + 18) (L1l_ycor - 2) [set Plabel-color 54 set plabel WORD "LOW " low]
ask patch (H1_xcor + 4) (Hl1l_ycor + 6) [set Plabel-color RED set plabel WORD "HIGH " high]

ask patch (M2_xcor - 5) (M2_ycor - 2) [set plabel-color yellow set plabel "MEDIUM 50"]
ask patch (L2_xcor + 18) (L2_ycor - 2) [set Plabel-color 54 set plabel WORD "LOW " low]
[set Plabel-color RED set plabel WORD "HIGH " high]

+
o

ask patch (H2_xcor + 4) (H2_ycor

if decision-rule = "Choose the best reply againts the opponents' most frequent demand"
[

let ep-x-coordinate simplex-side-length / 2

let shifted-ep-x-coordinate ep-x-coordinate - simplex-side-length / 2

let ep-y-coordinate (sgrt (3) / 6) * simplex-side-length

let shifted-ep-y-coordinate ep-y-coordinate - (sqgrt (3) / 4) * simplex-side-length

;; DRAW THE DECISION BORDERS

create-turtles 1 [

i\
;i LEFT SIMPLEX OUTER TRIANGLE
set size 0
setxy (surrounding-simplex-side-length / 2 - shift) (- sqrt(3) / 4 * (surrounding-simplex-side-length

- (surrounding-simplex-side-length - simplex-side-length) / 4))

set color green set pen-size 5 pd

set heading 270 fd (surrounding-simplex-side-length * 1 / 2) set color YELLOW fd
(surrounding-simplex-side-length * 1 / 2)

set heading 30 fa (surrounding-simplex-side-length * 1 / 2) set color RED fa
(surrounding-simplex-side-length * 1 / 2)

set heading 150 fa (surrounding-simplex-side-length * 1 / 2) set color 54 fa
(surrounding-simplex-side-length * 1 / 2) pu

;i DECISION BORDERS

set color black

set pen-size 1

;7 right border

setxy shifted-ep-x-coordinate - shift shifted-ep-y-coordinate

pd move-to patch (simplex-side-length / 4 - shift) 0 pu

;; left border

setxy shifted-ep-x-coordinate - shift shifted-ep-y-coordinate

pd move-to patch (- simplex-side-length / 4 - shift) 0 pu

;; lower border

setxy shifted-ep-x-coordinate - shift shifted-ep-y-coordinate

pd move-to patch (0 - shift) (- sqrt (3) / 4 * simplex-side-length)
pu

;i RIGHT SIMPLEX OUTER TRIANGLE

setxy (surrounding-simplex-side-length / 2 + shift) (- sqrt(3) / 4 * (surrounding-simplex-side-length
- (surrounding-simplex-side-length - simplex-side-length) / 4))

set color green set pen-size 5 pd

set heading 270 fd (surrounding-simplex-side-length * 1 / 2) set color YELLOW fd
(surrounding-simplex-side-length * 1 / 2)

set heading 30 fa (surrounding-simplex-side-length * 1 / 2) set color RED fa
(surrounding-simplex-side-length * 1 / 2)

set heading 150 fa (surrounding-simplex-side-length * 1 / 2) set color 54 fa
(surrounding-simplex-side-length * 1 / 2) pu

;i DECISION BORDERS

set color black

set pen-size 1

;7 right border

setxy shifted-ep-x-coordinate + shift shifted-ep-y-coordinate

pd move-to patch (simplex-side-length / 4 + shift) 0 pu

;; left border

setxy shifted-ep-x-coordinate + shift shifted-ep-y-coordinate

pd move-to patch (- simplex-side-length / 4 + shift) 0 pu

;; lower border

setxy shifted-ep-x-coordinate + shift shifted-ep-y-coordinate

pd move-to patch (0 + shift) (- sqrt (3) / 4 * simplex-side-length)

die

45

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

;; ADD A LABEL TO THE SIMPLEX VERTICES

ask patch (M1_xcor - 5) (Ml_ycor - 2) [set plabel-color yellow set plabel "MEDIUM 50"]
ask patch (Ll_xcor + 18) (Ll_ycor - 2) [set Plabel-color 54 set plabel WORD "LOW " low]
ask patch (H1_xcor + 4) (Hl1l_ycor + 6) [set Plabel-color RED set plabel WORD "HIGH " high]

ask patch (M2_xcor - 5) (M2_ycor - 2) [set plabel-color yellow set plabel "MEDIUM 50"]
ask patch (L2_xcor + 18) (L2_ycor - 2) [set Plabel-color 54 set plabel WORD "LOW " low]

ask patch (H2_xcor + 4) (H2_ycor [set Plabel-color RED set plabel WORD "HIGH " high

+
o

to check-stop-conditions

if memory-type != "Endorsed"
[

;; THREE POSSIBLE SCENARIOS FOR INTRATYPE MATCHES

set intratype-equitable-equilibrium-stop-condition all? agents [length filter [? = medium] intratype-memory >= (1
- epsilon) * m]

set intratype-fractious-state-stop-condition all? agents [length filter [? = medium] intratype-memory <= epsilon
* m]

set intratype-segregation-stop-condition (all? agents with [tag = black] [length filter [? = medium] intratype-memory
<= epsilon * m] and all? agents with [tag = orange] [length filter [? = medium] intratype-memory >= (1 -
epsilon) * m]) or
(all? agents with [tag = orange] [length filter [? = medium] intratype-memory <= epsilon * m] and all? agents

with [tag = black] [length filter [? = medium] intratype-memory >= (1 - epsilon) * m])

;i TWO POSSIBLE SCENARIOS FOR INTERTYPE MATCHES

set intertype-equitable-equilibrium-stop-condition all? agents [length filter [? = medium] intertype-memory >= (1
- epsilon) * m]

set intertype-segregation-stop-condition (all? agents with [tag = black] [length filter [? = high] intertype-memory
>= (1 - epsilon) * m] and all? agents with [tag = orange] [length filter [? = low] intertype-memory >= (1
- epsilon) * m]) or

(all? agents with [tag = orange] [length filter [? = high] intertype-memory >=

(1 - epsilon) * m] and all? agents with [tag = black] [length filter [? = low] intertype-memory >= (1 -

epsilon) * m])

if memory-type = "Endorsed"

[

let S (2 + (m-1) *d) /2 *m

;i THREE POSSIBLE SCENARIOS FOR INTRATYPE MATCHES

set intratype-equitable-equilibrium-stop-condition all? agents [check-endorsed-memory (intratype-memory) >= (1 -
epsilon) * S

set intratype-fractious-state-stop-condition all? agents [check-endorsed-memory (intratype-memory) <= epsilon * S

set intratype-segregation-stop-condition (all? agents with [tag = black] [check-endorsed-memory (intratype-memory)
<= epsilon * S] and all? agents [check-endorsed-memory (intratype-memory) >= (1 - epsilon) * S]) or

(all? agents with [tag = orange] [check-endorsed-memory (intratype-memory) <=

epsilon * S] and all? agents with [tag = black] [check-endorsed-memory (intratype-memory) >= (1 - epsilon)
* s 1)

;i TWO POSSIBLE SCENARIOS FOR INTERTYPE MATCHES

set intertype-equitable-equilibrium-stop-condition all? agents [check-endorsed-memory (intertype-memory) >= (1 -
epsilon) * S

set intertype-segregation-stop-condition (all? agents with [tag = black] [check-endorsed-memory-H (intertype-memory)
>= (1 - epsilon) * 8] and all? agents with [tag = orange] [check-endorsed-memory-L (intertype-memory) >=
(1 - epsilon) * S]) or

(all? agents with [tag = orange] [check-endorsed-memory-H (intertype-memory) >=

(1 - epsilon) * S] and all? agents with [tag = black] [check-endorsed-memory-L (intertype-memory) >= (1
- epsilon) * S])

;i 1. INTRATYPE MATCHES

;7 1.1. THE SYSTEM HAS REACHED AN EQUITABLE EQUILIBRIUM (intratype matches)
if intratype-equitable-equilibrium-stop-condition = true and intratype-simulation-finished? = false
[
print (word "* * * INTRATYPE MATCHES: The system has reached an equitable equilibrium in the iteration number "

elapsed-iterations " * x ")
set intratype—status "EQUITABLE EQUILIBRIUM" H display "EQUITABLE EQUILIBRIUM" in the system-status monitor
set intratype-simulation-finished? true ;7 the simulation for intratype matches is now finished.

1

46

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

BARGAINING MODEL D. J. Poza; F. A. Villafafiez

1.2. THE SYSTEM HAS REACHED A FRACTIOUS STATE (intratype matches)

if intratype-fractious-state-stop-condition = true and intratype-simulation-finished? = false

[

print (word "* * * INTRATYPE MATCHES: The systemhas reacheda fractious state inthe iterationnumber " elapsed-iterations
"ok ok km)
;; display "FRACTIOUS STATE" in the system-status monitor

set intratype-status "FRACTIOUS STATE"
the simulation for intratype matches is now finished.

set intratype-simulation-finished? true i

1

1.3. INTRATYPE-SEGREGATION: AGENTS WITH ONE COLOUR -> EQUITABLE EQUILIBRIUM AND AGENTS WITH THE OTHER COLOUR ->

FRACTIOUS STATE (intratype matches)
if intratype-segregation-stop-condition = true and intratype-simulation-finished? = false
[
print (word "* * * INTRATYPE MATCHES: Segregation has emerged in the iteration number " elapsed-iterations " * *
*")
;; display "SEGREGATION" in the system-status monitor

set intratype-status "SEGREGATION"
the simulation for intratype matches is now finished.

set intratype-simulation-finished? true i

1

2. INTERTYPE MATCHES

;7 2.1. THE SYSTEM HAS REACHED AN EQUITABLE EQUILIBRIUM (intertype matches)
if intertype-equitable-equilibrium-stop-condition = true and intertype-simulation-finished? = false

[
print (word "* * * INTERTYPE MATCHES: The system has reached an equitable equilibrium in the iteration number "
elapsed-iterations " * x x")

set intertype—status "EQUITABLE EQUILIBRIUM" H display "EQUITABLE EQUILIBRIUM" in the system-status monitor

set intertype-simulation-finished? true ;7 the simulation for intratype matches is now finished.

1

;7 2.2. INTERTYPE-SEGREGATION: AGENTS WITH ONE COLOUR -> high AND AGENTS WITH THE OTHER COLOUR -> low (intertype matches)

if intertype-segregation-stop-condition = true and intertype-simulation-finished? = false

[

print (word "* * * INTERTYPE MATCHES: Segregation has emerged in the iteration number " elapsed-iterations " * *
)

;; display "SEGREGATION" in the system-status monitor

set intertype-status "SEGREGATION"
the simulation for intratype matches is now finished.

set intertype-simulation-finished? true i

1

end

to-report check-endorsed-memory [agents-memory]

let g O
(foreach agents-memory endorsed-memory-weights [if ?1 = medium [set g g + ?2]])

report gq ;7 returns the number of elements equal to medium in the agent's memory (each appearance of medium in the

memory set is multiplied by the weight of the position in which it appears)

end

to-report check-endorsed-memory-H [agents-memory]

let g O
(foreach agents-memory endorsed-memory-weights [if ?1 = high [set g g + ?2]])

report g ;7 returns the number of elements equal to high in the agent's memory (each appearance of high in the memory

set is multiplied by the weight of the position in which it appears)

end

to-report check-endorsed-memory-L [agents-memory]

let g O
(foreach agents-memory endorsed-memory-weights [if ?1 = low [set g g + ?2]])

report gq ;7 returns the number of elements equal to low in the agent's memory (each appearance of low in the memory

set is multiplied by the weight of the position in which it appears)

end

47

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/

