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Abstract. There is an increasing interest in the Social Simulation community in 
the complete characterization of Agent-Based Models and replication is maybe 
the central issue. In this paper we propose to extend the replication task and 
analyze the validity of the results obtained in those models. In many published 
works authors don’t show if obtained results are general or a particular case that 
depends on particular initial conditions. We present the replication of a well-
known published model (Axtell et al. 2000) and we extend the initial work 
studying how the payoff matrix and the rules initially proposed affect the results 
and the main conclusions of the original paper. 

Keywords: Replication, Agent-based modeling, Validation, Verification. 

1   Introduction 

If both social sciences and economics are experimental sciences, they need a 
laboratory (López-Paredes et al., 2002). To this aim, agent based modeling has 
become an extremely useful methodology, as involving humans in experiments is 
always difficult, because of restrictions in time and availability (among others). 

By means of bottom-up models, social scientists have been able to analyze 
emergent social phenomena beyond the traditional simulation and experimental 
techniques. From micro behaviours and interactions among agents, we have been able 
to build stylized models explaining some of the relevant macro-observed facts.  

The pioneering works by Schelling and Axelrod showed us how computational 
sciences might help social scientists to develop models based on real assumptions 
about the behaviour of economic agents. However, we had to wait for several decades 
to put those pioneering works to the test. Thus, the research by Schelling (1971) was 
intensively extended by Epstein & Axtell (1996), who built up a real Universe 
(Sugarscape) by means of simple rules. More recently, Galan & Izquierdo (2005) 
discussed the meta-norm models by Axelrod (1986). 

The efforts for replicating previous published models have grown during recent 
years. However, model replicating is a very tough task, as it was showed by Axelrod 
et al. (1997), Edmonds & Hales (2003) and Sansores & Pavón (2005). More recently, 
Wilensy & Rand (2007) proposed some interesting recommendations for improving 
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diffusion and rigour in multi-agent simulations. Anyway, replication is always the 
first step for improving and extending previous models, so that new hypothesis and 
new agent behaviours could be tested. 

In this paper, we replicate the model by Axtell et al. (2000) (hereafter AEY), where 
two agents want a portion of the same pie, and the portion a particular agent gets 
depends on the portion demanded by the other agent. Our results are in agreement 
with their conclusions, both with non distinguishable and distinguishable agents (the 
tag model), as Dessalles et al. (2007) also confirmed in a previous replication of this 
work. However, in this paper, we analyze the hypothesis that researchers should make 
to obtain the results shown in AEY’S model. We will pay special attention to the 
initial conditions of the system (i.e., memory of the players before the game is started) 
and different ways in which an agent can take a decision. These considerations should 
be carefully explained in publications to facilitate replication and prevent researchers 
from making erroneous hypothesis and considering particular cases as general 
conclusions. 

But we try to go one step further. First, we have considered possible 
artefacts/biases (Galán et al., 2009 & Kubera et al., 2009) and we have tested the 
results to minor changes in the agents decision rule (as López-Paredes et al., 2004 
suggested), so that their decision depends on the most likely option taken by their 
opponents in previous games; in particular, agents decide based on the opponents 
decision “statistical mode”. It is consistent with experimental research done in 
neuroscience which demonstrates that humans don’t use statistical properties in their 
internal decision processes. 

Secondly, we have tested how dependent the results are on the reward values in the 
payoff matrix, to see how it affects the aggregated observed behaviour.  

The main result of our research is that these simple changes may affect 
dramatically how and when the equilibrium is reached. Our results confirm the 
important role of tags in the evolution of the system, what has been empirically 
demonstrated by Ito et al. (2007) that plays a main role in ‘rational’ decisions. 

2   The Model 

We begin by replicating the bargaining model by AEY in which two players demand 
some portion of a pie. They could demand three possible portions: low, medium and 
high. As long as the sum of the two demands is not more than 100 percent of the pie, 
each player gets what he demands; otherwise each one gets nothing. 

The authors assume a population of n agents that are randomly paired to play. Each 
agent has a memory in which he retains the decision taken by his opponents in 
previous games. The agent uses the information stored in his memory to demand the 
portion of the pie that maximizes his/her benefit (with probability 1-ε) and randomly 
(with probably ε). 

At first, the authors assume that agents are indistinguishable from one another, but 
from their memories about previous games. They conclude that, whenever there are 
not observable differences among the agents (the agents have not a distinguishable 
tag), there is only one possible state of equilibrium in which all the agents demand 



 

half of the pie. Otherwise, all the agents are either aggressive or passive (some of 
them demand low and some of them demand high), and no equilibrium is reached. 

Secondly, the authors let the agents be distinguishable from one another by 
introducing a tag: they create two types of agents, each of whom with a different tag. 
The agents are capable of identifying their opponents’ tag and they keep the portion 
of the pie demanded by their opponents in their memories, both with the same and 
different tag. In this case, the authors prove that, just by adding different tags to the 
players, discriminatory states can emerge under certain conditions, in which agents 
with different tags follow different behaviours. 

3   The Model with one agent type 

3.1   Replication 

First, we have replicated the AEY’s model. We used the original payoff matrix (i.e. 
the combination of values for the different demands): 30 percent for low; 50 percent 
for medium and 70 percent for high. We also used the original decision rule. 

This means that when two players are paired to play, each one gets the portion that 
they demand as long as the sum of the two demands is less than the 100 percent of the 
pie. For example: 

- if player 1 demands 30 (low), he will receive 30 independently of what player 2 
demands.1 

- if player 1 demands 50 (medium), he will get 50 unless player 2 demands 70.2 
- if player 1 demands 70 (high), he will get 70 only if player 2 demands 30.3 

  
Problem approach 

 
Using mathematical notation, the payoff matrix can be explained as follows: 
 

n - number of agents      
ε - uncertainty parameter 
m - memory length of each agent 
Si - space of agent i (i = 1,…,n) possible strategies 
j - possible strategy ⇒ j ∈ [L, M, H] / M =50, H = 100 - L, L < H 

(L - select Low, M - select Medium, H - select High) 
 [v1, v2,..,vm]i - memory array of agent i, which stores the strategies vk ∈ [L, M, H] 

chosen by the opponents in the m previous rounds 

                                                           
1 When player 1 chooses 30, the sum of 30 (player 1’s demand) and all the possible 

combinations of demands for player 2 are less or equal than 100 percent of the pie. 
2 If player 2 chooses 70, the sum of the two demands is higher than 100 percent of the pie. In 

this case, both players get nothing. 
3 If player 2 chooses 50 or 70, the sum of the two demands exceeds 100 percent of the pie and 

each agent gets nothing. 



 

[A, B] - couple of agent randomly paired ( n/2  randomly pairs by round). 

If agent A chooses strategy i ∈ SA, and agent B chooses strategy j ∈ SB, they will receive 
[i, j] if (i + j)  ≤ 100, and [0, 0] if (i + j) > 100 (see Table 1, Combination of payoffs) 
 

Decision rule: 
 

What makes an agent choose among low, medium or high? An agent will check his 
memory to find how often each option has been chosen by his opponents. Then, the 
agent considers that the probability that his current opponent chooses 30 (low) – for 
example – is equal to the relative appearance of 30 in his memory. In the same way, 
he calculates how likely it is for the opponent to choose 50 and 70. Once the agent 
knows this information, the agent estimates his benefit for the three possible options 
as follows: 

- The average benefit I get if I choose 30 is 30 multiplied by the probability that 
my opponent chooses 30, 50 or 70.4 

- The average benefit I get if I choose 50 is 50 multiplied by the probability that 
my opponent chooses 30 or 50.5 

- The average benefit I get if I choose 70 is 70 multiplied by the probability that 
my opponent chooses 30.6 

  
Notice that this ‘rational behaviour’ takes place with probability 1-ε. However, a 
random decision is taken with probabilityε.  
This decision rule is explained with mathematical notation below: 

nj
A - number of positions with value j∈ [L, M, H] in the memory array of agent A  

⇒ [v1, v2,..,vm]A 

Pr(Bj
A) = nj

A / m ⇒ Probability estimated by the agent A for the possibility that the 
opponent B selects the strategy j (equivalent to the relative 
frequency of occurrence of value j in the memory array of the 
agent A) 

The utility function for agent A when selects the strategy i ∈ Si = [L, M ,  H ]  is:  

U ( Ai ) = i • Σj        ∈ SB [Pr(Bj
A) • V( i ,  j ) ]  /   i∈ SA;    V(i, j)= 1 if (i + j) ≤ 100;   

V(i, j)= 0 if (i + j) > 100 

Then, each agent A selects with probability (1-ε) the strategy i that maximizes its utility 
function: 

     A select i∈ SA = [ L , M , H ]   /  EU(Ai) = max U(Ai) 
    And selects a random strategy i∈ SA with probability ε . 

                                                           
4 He assumes that the probability that his opponent chooses 30, 50 or 70 is the sum of elements 

equals to 30, 50 and 70 in his memory divided into the memory size. 
5 He assumes that the probability that his opponent chooses 30 or 50 is the sum of elements 

equals to 30 and 50 in his memory divided into the memory size. 
6 He assumes that the probability that his opponent chooses 30 is the sum of elements equals to 

30 in his memory divided into the memory size. 



 

 
Example 
 n = 10; m = 5;     
 L =30 , M = 50, H = 70 

⇒ SA =[L, M, H] = [30,50,70] - space of possible strategies for agent A  
if [v1, v2,..,vm]A = [30,30,50,70,30] - current memory array of agent A  

⇒ n30
A =3,  n50

A =1,  n70
A =1  ⇒ Pr(B30

A) = 3/5,  Pr(B50
A) = 1/5,  Pr(B70

A) = 1/5 
 

U(A30) =  30 · Pr(B30
A) · V(30,30) + 30 · Pr(B50

A) · V(30,50) +  
30 · Pr(B70

A) · V(30,70) = 30 · 3/5 · 1 + 30 · 1/5 · 1 + 30 · 1/5 · 1 = 30 
 

U(A50) =  50 · Pr(B30
A) · V(50,30) + 50 · Pr(B50

A) · V(50,50) +  
50 · Pr(B70

A) · V(50,70) = 50 · 3/5 · 1 + 50 · 1/5 · 1 + 50 · 1/5 · 0 = 40  
 

U(A70) =  70 · Pr(B30
A) · V(70,30) + 70 · Pr(B50

A) · V(70,50) +  
70 · Pr(B70

A) · V(70,70) = 70 · 3/5 · 1 + 70 · 1/5 · 0 + 70 · 1/5 · 0 = 42  

Agent A selects 70 with probability (1-ε), as it maximizes its utility function.  
EU(A70) = max U(Ai) = 42 
And selects an random strategy i∈ SA = [30,50,70] with probability ε . 

 
A simulation of this replication is shown in Figures 1 and 2. Both simulations were 

run with the same initial parameters (the same number of agents, the same memory 
size and the same uncertainty parameter -ε-).  

This simplex represents the memory state of the agents. The more demands of L an 
agent keeps in his memory, the closer to the bottom-right vertex it is plotted. 
Equivalently, if a player’s memory contains a considerable amount of H’s, it is placed 
near the top vertex. Finally, if most of the elements in an agent’s memory are M’s, it 
is plotted close to the bottom-left vertex.  

The triangle is split into three different regions, separated by three ‘decision 
borders’. The top region is dominated by frequent demands of H in previous matches. 
This is why agents in this region tend to demand L7, as it maximizes their estimated 
benefit. On the right region, agents are likely to demand H7 because L is the dominant 
element in their memories. Agents on the left region have often found that their 
opponents demand M; because demanding M maximizes the expected payoff, they 
are likely to choose M7 in the current iteration. 

The three ‘decision borders’ intersect in a point that represents Nash’s equilibrium 
in which agents have the same preference for L, M or H. 

 
AEY states that the system reaches an ‘equitable equilibrium’ when all the agents 

have, at least, (1-ε)·m8 elements in their memories equal to M. Figure 1 shows an 
equitable equilibrium. In this state, all the agents have found frequent demands of M 
in the past, and they assume that M is the best response. Because all the agents 
demand M, all the pie is shared out among the players, which means that the system 
has reached an efficient state. Once the equitable equilibrium is established, it is very 

                                                           
7 With probability 1-ε 
8 Where ε is the uncertainty factor and m is the memory size 



 

difficult for the system to leave this state: the noise parameter ε makes agents choose 
random probabilities at times. However, this individual behaviour is not able to affect 
the inertia of the system. Figure 2, by contrast, shows a fractious state, in which all 
the agents are aggressive or passive (most of them select L or H; M is hardly chosen) 
and no equilibrium is reached. In this case, the system was started with different 
random initial conditions. Because agents have not learnt to compromise, some 
portions of the pie remains undistributed, which shows the high inefficiency of this 
system.  

 
Fig. 1. Replication of AEY's model with a number of agents n=100, uncertainty parameter 

ε=0.2 and memory size m=30. Equitable equilibrium 
 

 
Fig. 2. Replication of AEY's model with a number of agents n=100, uncertainty parameter 

ε=0.2 and memory size m=30. Fractious state. 
 
AEY studied the system behaviour for several values of memory size (m) and 

uncertainty factor (ε), and so we did in our replication. Figure 3 represents the 
transition time between regimes (i.e. the number of iterations that it takes for the 
system to reach an equitable equilibrium starting from a fractious state).  

 
Both models, AEY’s and our replication, produce the same result in relation with 

the transition time: it increases as the memory size grows. Notice that this simulation 
starts in a fractious state,; this is why, at first, all the agents tend to demand L or H 
with high probability (1-ε) because their memories contains 30 and 70 values. This 
situation provokes that the agents continue demanding L or H (M never maximizes 
their expected benefit9). Therefore, we depend on the noise parameter ε to escape the 
fractious state, because this is the only way to make M appear in the agent’s 
memories, and, consequently, make the agents consider M as a good option. When the 

                                                           
9 When the system is in fractious state. 



 

system is started (fractious state), the probabilities that an agent chooses M is ε/310. 
This is the reason why the higher ε, the higher the probabilities of leaving the 
fractious state and thus, the faster the convergence to an equitable equilibrium, as 
figure 3 shows. 

 
Fig. 3. Replication of AEY's model.. Number of iterations to equitable equilibrium, as a 

function of the memory size; n=10; various ε (uncertainty factor). 
 

3.2   Introduction of a new decision rule 

After replicating the original scenario, we changed AEY’s decision rule so that the 
agents demanded the pie portion maximizing their benefits against the most likely 
option taken by their opponents in previous games (mode of their memory). In this 
case, an agent assumes that his opponent’s option will be the mode of the content of 
his memory.  

An agent will choose H if L is the most frequent decision taken by his opponents in 
the previous matches; If the most repeated value in his memory is M, the player will 
choose M. If previous matches show that H is the most frequent decision taken by his 
opponents, the agent will choose L. 

The new decision rule is mathematically explained below: 
 
Each agent A selects, with probability (1- ε), its strategy i according to the statistical 
mode (Mo) of its memory array as follows: 

Mo[v1,v2,...,vm]
A = i /max nj

A  = ni
A  for all j∈SA = [ L , M , H ]    

If Mo[v1,v2,...,vm]
A = L    ⇒  A selects strategy i=H 

                                                           
10 The probability of taking a random decision is equal to ε. Supposing that this is the case, the 

probability that the random decision is equal to M is one out of three (chances that M and H 
are not randomly chosen). In conclusion, the probability that M is chosen is ε/3. 



 

If Mo[v1,v2,...,vm]
A = M   ⇒  A selects strategy i=M 

If Mo[v1,j2,...,vm]
A = H   ⇒  A selects strategy i=L 

and selects a random strategy i∈A with probability ε. 
Example 
n = 10; m = 5; 
L = 30, M = 50 , H = 70 

⇒SA =[L, M, H] = [30,50,70] - space of possible strategies for agent A 
if [v1,v2,...,vm]A = [30,30,50,70,30] - current memory array of agent A 

⇒ n30
A =3, n50

A =1, n70
A =1 ⇒ Mo[30,30,50,70,30]=30  ⇒ Agent A selects 70 

with probability (1- ε), and selects a random strategy i∈ SA = [30,50,70] 
with probability ε. 

 
When the agents used this new decision rule, the chances of reaching the equity 

equilibrium were considerably reduced (as López-Paredes et al., 2004 concluded). 
Figures 4 and 5 show this comparison. To perform this simulation, all the agents 
where initialized with random memories (as they were in AEY’s model), and we 
measured the percentage of experiments that reached an equitable equilibrium, versus 
the number of experiments that got stuck in a fractious state. 

 
Fig. 4. Replication of AEY’s model. Percentage of experiments reaching an equitable 

equilibrium. Uncertainty parameter ε=0.2. Original decision rule. 
 



 

 
Fig. 5. Replication of AEY’s model. Percentage of experiments reaching an equitable 

equilibrium. Uncertainty parameter ε=0.2. New decision rule. 
 
Figure 4 shows that, provided n (number of agents) and m (memory size) large 

enough, the probability of reaching an equitable equilibrium is close to 1. However, 
when the decision rule is changed, the probability of reaching the equity equilibrium 
and the probably of reaching a fractious state are quite similar, as figure 5 shows. 

Furthermore, even when the equity equilibrium was reached, the time to get it was 
longer in comparison with the same conditions in the experiment with AEY’s 
decision rule.  

Figure 6 shows two simulations of our modification of AEY’s model, in which the 
decision rule has been changed as described before. The left triangle shows an 
equitable equilibrium and the one on the right displays a fractious state. The 
simulation was run with the same parameters in figures 1 and 2 (100 agents, memory 
length = 30 and ε = 0.2). Notice how the ‘decision borders’ change after introducing 
the new decision rule.  

 
Fig. 6. Modification of AEY’s model with a new decision rule. Nnumber of agents n=100, 

uncertainty parameter ε=0.2 and memory size m=30. Equitable equilibrium and fractious state. 



 

3.3   Introduction of a variable payoff matrix 

In AEY’s model, the values of the possible demands are fixed: 30 percent of the 
pie for low; 50 percent of the pie for medium and 70 percent of the pie for high. We 
have studied different combinations for low (L) and high (H) rewards to analyse the 
effects on the behaviour of the system11. The combination of payoffs is shown in 
Table 1. 

 
P1\P2 H M L  P1\P2 H M L  P1\P2 H M L  

H 0 \ 0 0 \ 0 95\5  H 0 \ 0 0 \ 0 90 \ 10  H 0 \ 0 0 \ 0 85 \ 15  
M 0 \ 0 50\50 50\5  M 0 \ 0 50 \ 50 50 \ 10  M 0 \ 0 50 \ 50 50 \ 15  
L  5 \ 95 5\50 5\5  L 10 \ 90 10 \ 50 10 \ 10  L 15 \ 85 15 \ 50 15 \ 15  

               
P1\P2 H M L  P1\P2 H M L  P1\P2 H M L  

H 0 \ 0 0 \  0 80 \ 20  H 0 \ 0 0 \ 0 75 \ 25  H 0 \ 0 0 \ 0 70 \ 30  
M 0 \ 0 50 \ 50 50 \ 20  M 0 \ 0 50 \ 50 50 \ 25  M 0 \ 0 50 \ 50 50 \ 30  
L 20 \ 80 20 \ 50 20 \ 20  L 25 \ 75 25 \ 50 25 \ 25  L 30 \ 70 30 \ 50 30 \ 30  

               
P1\P2 H M L  P1\P2 H M L  P1\P2 H M L  

H 0 \ 0 0 \ 0 65 \ 35  H 0 \ 0 0 \ 0 60 \ 40  H 0 \ 0 0 \ 0 55 \ 45  
M 0 \ 0 50 \ 50 50 \ 35  M 0 \ 0 50 \ 50 50 \ 40  M 0 \ 0 50 \ 50 50 \ 45  
L 35 \ 65 35 \ 50 35 \ 35  L 40 \ 60 40 \ 50 40 \ 40  L 45 \ 55 45 \ 50 45 \ 45  

Table 1: Possible payoff matrices (demand combinations). 
 
The analysis of the simulations showed that when the differences: H-M or M-L are 

higher the transition time between the fractious state and the equitable equilibrium is 
longer. A comparison of the transition time for different payoff matrix is shown in 
Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
11 In any case, the sum of the values of L and H is equal to the 100 percent of the pie. 



 

 
Fig. 7 Number of iterations to equitable equilibrium as a function of L (lowest payoff) and n 

(number of agents); uncertainty parameter ε = 0.1 and memory length = 10. 

3.4   Changing the initial conditions: ‘progressive memory’ 

In AEY’s model, all the individuals in the experiment had a fixed-size memory 
along all the matches. Furthermore, their memories contained random values when 
they are created. 

Kubera et al. (2009) explains that it can introduce biases in the results. In our 
study, we shall suppose that the memory size of each individual grows at a rate of one 
unity per match, starting with a 0-size memory, until the memory size reaches AEY’s 
fixed value. The memory size will not grow any longer when it reaches this value. 

To fix ideas, let us suppose that we have defined a memory size of 6 (m=6). This 
means that each agent can remember the decision taken by his latest six opponents. In 
AEY’s original model, a memory size of 6 means that all the agents have six random 
values in their memories when the game is initialized. After each match, the decision 
taken by his opponent is stored in his memory, and the oldest value in his memory is 
eliminated so that the memory size is kept constant. 

With our modification of the initial conditions of the system, in the first match, all 
the agents have six memory positions. However, as they have never played against 
any other player, their memories are empty. This is the reason why, in the first match, 
the decision taken by each agent is random. Afterwards, all the agents store the 
decision taken by their opponents, as they did in AEY’s model. They will use this 
information to take a decision in the second match, with the same criteria as in AEY’s 
model. Then, the decision taken by their opponents will be stored in their memories 
once again. In the third match, each agent will have information about the two 
previous matches; they will take a decision based on this information and store the 
decision taken by their opponents, and so on. When the number of matches is higher 
than the memory size for each agent (m), the agents will store the decisions taken by 
their opponents in their memories, but will eliminate the oldest value in their 
memories so that the memory size is equal to m in the following matches.  



 

Figure 8 compares the time it takes for the system to reach the equitable 
equilibrium, both with and without progressive memory. In the system lacks 
progressive memory (original AEY’s model), agent’s memories are initialized with 
m=12 random values. In the case of progressive memory, each agent’s memory is 
started with one random value and their memory grows in one element iteration by 
iteration until it reaches length m=12. 

 

 
Fig. 8 Comparison of AEY’s model with and without progressive memory. Number of 

iterations to equitable equilibrium. Uncertainty parameter ε=0.1. Memory length = 12.  
 

Although it might seem that the system behaves as Axtell’s model, the simulation 
showed that just by changing the initial conditions, the results of the simulation are 
completely different.  

First, as figure 8 shows, the time it takes for the system to reach the equitable 
equilibrium is longer than in AEY’s original model. Because the first decision is 
random, the chances of choosing L or H are twice the chances of choosing M, which 
makes the system approach to the fractious state during the first steps of the 
simulation. The presence of noise in the system (ε≠0), make it possible that agents 
choose M with certain probability, which leads the system to the equitable 
equilibrium in the long term. Because of this transitory situation, in which the system 
tends to approach to the fractious state during some iterations, the number of 
iterations until the system reaches the equitable equilibrium is higher than in EAY’s 
model. 

Secondly, notice that, in the case of progressive memory, the value assigned to ε is 
crucial. For low values of ε, the system tends to reach a fractious state. The presence 
of noise makes the agents choose M at some point of the simulation. The increment of 
the presence of M in their memories makes the agents consider that M is a good reply: 
eventually, agents learn to compromise and reach an equitable equilibrium. The 
chances of this situation happening are higher when ε grows. 



 

4   The Model with two agent types (the “tag” model) 

In a second experiment, AEY let the agents be distinguishable from one another by 
introducing a tag: they create two types of agents, each of whom with a different tag 
(colour). The agents are capable of identifying their opponents’ tag (colour) and they 
keep the portion of the pie demanded by their opponents in their memories, both with 
the same and different tag. AEY states that discrimination (segregation) can emerge 
spontaneously, both when the agents play with other agents of the same type (intra-
type matches) and when the agents play against players with different tag (inter-type 
matches). 

To study the different cases of segregation, AEY uses two simplexes: one shows 
the memory state of the agents when they play against agents with their same tag; the 
other one display agent memories when they play against agents with different tag. 
However, our replication did not show any segregation: all the agents learned to 
compromise and they always reached the equitable equilibrium (independently of 
their tag)12.  

Then, we tried changing the decision rule, so that the agents chose the best reply 
against the most frequent option taken by their opponents in previous matches (mode 
of their memory), see section 3.2. The simulation showed that just after changing the 
decision rule, segregation emerged spontaneously. In this case, we observed all the 
possible cases of segregation shown in AEY’s model. We can distinguish two types 
of segregation: intratype segregation (i.e. discrimination that emerges when players 
with the same tag play among them) and intertype segregation (i.e. discrimination that 
arises when agents play against agents with different tag). 

 
Intratype segregation 

Figure 9 shows the three scenarios that can arise when players of the same tag play 
among them (intratype matches). The percentage of experiments that reach each 
situation is shown in the table below, for several values of L (lowest payoff). 

 

Lowest Payoff Equitable Equilibrium Fractious State Equitable eq. / 
 Fractious state 

L=10 22,9% 25,0% 52,1% 
L=20 20,6% 29,6% 49,8% 
L=30 19,7% 27,1% 53,2% 
L=40 21,5% 31,9% 46,6% 

Fig. 9 Intratype memories (memory of the agents when they play against players with the 
same tag). Modification of AEY’s model with a new decision rule. N=100 (50 agents of each 

type). M=20. ε=0. 

                                                           
12 We recently asked AEY’s authors about the decision rule that they used to provoke 

segregation, and we hope their answer would be available for a final version of this work.  



 

In the case of intra-type matches, we could appreciate three different scenarios:  
- Equitable equilibrium (all the agents demand M independently of their tag). 
- Fractious state (the agents are whether aggressive or passive and do not learn 

to compromise).  
- Intra-type segregation: The agents with one tag reach an equitable 

equilibrium and the agents with another tag reach a fractious state. 
The first and the second scenarios do not show any kind of discrimination: the 

system reaches an equitable equilibrium or a fractious state independently of the 
agent’s tag, as it did in AEY’s model with one agent type. The third scenario is more 
interesting: when dark players play against dark players, they consider that M is the 
best response and reach an equitable equilibrium. However, when light players play 
among them, they do not learn to compromise and the system reaches a fractious 
state. This happens even though the decision rule is the same for both types of agents. 

 
Intertype segregation 

 
In the case of inter-type matches, we can appreciate the two different scenarios 

shown in figure 10: 
- Equitable equilibrium (all the agents demand M independently of their tag). 
- Fractious state (the agents of one colour are aggressive –they choose H– and 

the agents of another colour are passive –they choose L–.  
The percentage of experiments that reach each scenario is listed below. 

 
Lowest Payoff Equitable Equilibrium Stable Fractious State 

L=10 30,9% 69,1% 
L=20 31,2% 68,8% 
L=30 33,1% 66,9% 
L=40 33,7% 66,3% 

Fig. 10 Intertype memories (memory of the agents when they play against players with 
different tag). Modification of AEY’s model with a new decision rule. N=100 (50 agents of 

each type). M=20. ε=0. 
 
 Some of the experiments showed intertype discrimination. When agents of 

different tags are paired to play, the dark agents find that light agents have frequently 
demanded H. Consequently, they decide to choose L, which is the only demand that 
allows them to get a non-zero benefit. On the contrary, after a number of iterations, 
the light agents have found that light agents are likely to choose low (L). Therefore, 
they choose (H), as it maximizes their benefit. This situation can be seen as a ‘stable 
fractious state’, because the system keeps in this state for longs periods of time: all the 
agents with one tag are aggressive (they all choose H) and all the agents of the other 
tag are passive (all of them choose L).  



 

The tables below figures 9 and 10 show that, in intratype and intertype games, the 
chances of reaching one of the scenarios does not change substantially when we 
modify the payoff matrix.  

5   Conclusions 

In AEY’s model segregation emerges spontaneously as a consequence of the tag 
recognition. There is not a behaviour rule making agents behave in a different way 
when they play against agents with their same tag or with different tag. The only 
difference among the agents is the tag – which a priori does not need to influence on 
the decision as it is an external property – and the memories about the previous 
games. Initially, the two types of agents are initialized with the same criteria to get a 
random memory. After a series of iterations with other agents, they “learn” how to 
behave depending on whether the agent they meet is same-tag opponent or a different-
tag opponent. 

The replication of AEY’s no-tags model, showed that transition time rises as the 
memory size and the number of agents grow, as (Axtell et al. 2000) concluded. The 
simulation of our replication is completely in agreement with their results. 

The modification of AEY’s no-tags model showed interesting results. We conclude 
that simple changes within the original model (using the mode instead of the mean to 
take a decision), provokes dramatic changes in the studied system. In fact, when we 
introduced this new decision rule, the chances of reaching an equitable equilibrium 
were considerably lower than in AEY’s original model. 

Moreover, changing the original payoff matrix in AEY’s model resulted in a 
considerable modification in the transition time: the higher the reward assigned to 
low, the longer it took for the system to reach the equitable equilibrium. 

Initializing the agents with a progressive memory (i.e. a memory which grows one 
element per match) instead of using AEY’s fixed-size memory, showed an interesting 
scenario: agents tend to be aggressive or passive at first, but after a number of 
iterations, they learn to compromise. This makes the system reach an equitable 
equilibrium in the long run. Agents’ fractious behaviour in the first stages of the 
simulation resulted in an increase of the transition time in comparison with AEY’s 
original model. 

After replicating the tag model, we conclude that our results are in accordance with 
the original AEY’s work. However, we had to make the assumption that the decision 
rule used by AEY was to choose the best reply against the most frequent decision 
taken by the opponents in previous matches (agents use mode and not the mean to 
endorse the opponent’s strategy). If agents consider that opponents will play H/L/M 
with the same probability that it is recorded in its memory, segregation never emerges 
in our experiments. 

Nevertheless, trying to go a step further, we have inquired if the segregation results 
are independent of the payoff matrix. We have evaluated different combinations of 
proportions in the rewards L/H/M and we can conclude that segregation always 
emerges, independently of the assigned values to these rewards. Furthermore, 
changing the payoff matrix did not affect the time it took for the system to reach each 



 

scenario (both with and without segregation). This is in contrast with the ‘no-tag 
model’, in which agents used the mean to maximize their benefit. In this case, it takes 
much more time to get the equilibrium (both players play M) when the values 
assigned to L/H/M are not very distant. 

In future research we will include new decision rules, such as using moving 
averages when taking a decision and endorsement mechanisms to assign more 
relevance to the decisions taken in the recent games than in the older ones. We are 
currently working in playing the game in a 2D grid and with different social networks 
topologies, to study how the segregation can affect/be affected when agents are not 
randomly paired. 
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