
1 MODEL DESCRIPTION

This is a model description of a replication of the model described in Janssen (2008) in
Netlogo. The original model was implemented in Java in 2002.
 The model description follows the ODD protocol for describing individual- and
agent-based models (Grimm et al. 2006) and consists of seven elements. The first three
elements provide an overview, the fourth element explains general concepts underlying
the model’s design, and the remaining three elements provide details. Additionally,
details of the software implementation are presented.

Purpose
The purpose of this model is to study the conditions under which agents will cooperate in
one-shot two-player Prisoner’s Dilemma games if they are able to withdraw from playing
the game and can learn to recognize the trustworthiness of their opponents. When the
agents display a number of symbols and they learn which symbols are important to
estimate the trustworthiness of others, agents will evolve who cooperate in games in line
with experimental observations.

State variables and scales
There are n agents in the population. Each generation they play a number of one-shot
games against randomly drawn others. Each next generation consists a fraction of new
agent whoms parents are selected from a pair wise competition.

Process overview and scheduling
In one generation a certain number (g) of games are played. For each of these, two agents
are chosen at random. These agents then decide if they trust each other. If they do trust
each other, they play the Prisoner’s Dilemma once and the resulting payoffs are added to
their respective total scores.

The average material payoff an agent has received from all its interactions (games
played or games exited) with other agents is used to determine the offspring in the next
generation. Each generation 10% of the population is replaced by new agents who are
selected from the population (including those who previously left the system) using a
tournament selection algorithm. Two contestants are picked at random from the
population, and their average payoffs are compared. The one with the higher average
payoff becomes a new agent. If both contestants have identical scores, the winner is
picked at random.

The genotype of the new agent (α, β, xi, wi) is copied from the parent and then may
experience mutation. The mutation rates for strategies, symbols, and weights determine
the probability or degree that each individual component will be mutated. In the case of
the symbol, a mutation consists of flipping the component to the opposite state (0 (off) to
1 (on) or vice versa). In the case of the motivations and weights, there is always a
mutation draw from a Gaussian distribution with means equal to the parameter values
after crossover.

Note that the model includes two types of adaptation of the weights. Within a
generation agents are able to update the weights in order to learn to recognize the agent

types. Between generations agents derive weights from the previous generation, although
those weights are somewhat altered by mutations.

Design concepts
Emergence. Emergence of other-regarding preferences of the agents that lead to
cooperation
Adaptation. Agents update the weights of their neural network during a generation by
learning and between generation from imperfect inherence from their parents. They also
inherent the symbols of their parents, as well as the other-regarding preferences. During a
generation the population learn to recognize trustworthy others.
Fitness. Payoff per interaction derived during a generation is used as the fitness indicator.
Sensing. Agents can observe symbols of other agents.
Interaction. Agents interact by proposing to play a game, playing a game by deciding to
cooperate or defect.
Stochasticity. Stochasticity exists in the probabilistic decision making, and the noise
added to the inherence of the parameters of the next generation.

Initialization
The initial values of α are drawn from a uniform distribution between 0 and 1, and for β
between 0 and 1, by which only initial conditions are accepted where β ≤ α. The initial
values of the symbol xi, 0 or 1 for each, are chosen randomly, and all initial weights wi
are set to 0.

Input

Parameter Value
Number of agents (n)
Number of symbols (s)
Learning rate (λ)
Steepness (γ)
Number of games per generation (g)
Mutation rate symbols
Standard deviation mutation w
Standard deviation mutation α, β

100
20
1.0
2

500
0.05
0.1

0.025

Submodels
The Game
Each agent has three possible actions: cooperate (C), defect (D), or withdraw (W). If both
players cooperate, they each get a payoff of R (reward for cooperation). If both players
defect, they each get a payoff of P (punishment for defecting). If player A defects and B
cooperates, A gets a payoff of T (temptation to defect), and B gets S (sucker’s payoff). If
at least one of the players withdraws from the game, both players get a payoff of E (exit
payoff). The resulting payoffs are given in Table 1.

Table 1. Pay-off table of the Prisoner’s Dilemma with the option to withdraw from the game.
Player B

Cooperate Defect Withdraw
Cooperate R,R S,T E,E

Defect T,S P,P E,E
Player

A

Withdraw E,E E,E E,E

I assume that the costs and benefits of exit are such that the expected payoffs from
choosing not to play are higher than those resulting from mutual defection, but lower than
those expected from mutual cooperation. The Prisoner’s Dilemma is defined when T > R
> E > P > S and 2R > T + S. In this situation the best option for any one move is to
withdraw from the game. If one expects that the other agent will cooperate, the best
option is to defect. If one expects that the other agent will defect, the best option is to
withdraw. Since the game is symmetrical, each player comes to the same conclusion, so
they both withdraw and end up with payoffs that are much lower than if they both trust
that the other will cooperate. The pay-off matrix for the game is defined using T = 2, R =
1, E = 0, P = -1, and S = -2.
 Subjects always prefer more for themselves and the other person, but are more in
favor of getting payoffs for themselves when they are behind than when they are ahead.
The strength of such preferences is increasing in the magnitudes of parameters α and β.
The utility can then be formulated as

)0,max()0,max(ijijiiiiu ππβππαπ −+−−= (1)

where ui is utility of agent i, and πi is the monetary income of agent i. We define βi ≤ αi
and 0 ≤ β ≤ 1. The α value can be regarded as the strength of an individual’s aversion to
exploiting others, and β can be regarded as an individual’s degree of altruistic tendency.
These α and β values determine the strategies of the agents to cooperate or not.

To include the heterogeneity of motivations, I formulate the utility function in Table 2,
where the material payoffs can be adjusted by individual motivations.

Table 2. Utility pay-off table of the Prisoner’s Dilemma with the option to withdraw from the game.

Player B
Cooperate Defect Withdraw

Cooperate R,R S+βA(T-S),T-αB(T-S) E,E
Defect T-αA(T-S),S+βB(T-S) P,P E,E

Player
A

Withdraw E,E E,E E,E

An agent has three elements: (1) the set of symbols that it displays, (2) the strategy that it
uses to decide whether to trust or not another agent, and (3) the strategy it uses in
Prisoner’s Dilemma games.
 The symbols are represented in the following way. Each agent has s symbols that
can have value 0 or 1, where 0 means no display of the symbol and 1 means display of
the symbol. The other two elements require more discussion.

Trust
The rule an agent uses to decide to trust the other agent, and thus be willing to play a
Prisoner’s Dilemma game, is represented as a single-layer neural network. A neural
network has s inputs, which are the values 0 and 1 of the other agent’s symbols. A
weighted sum M of these inputs is calculated using the following equation:

,
1

0 ∑
=

+=
s

i
ii xwwM (2)

where w0 is the bias, wi is the weight of the ith input, and xi is the ith input. Initially, all
weights are zero, but during the simulation the network is trained, when new information
is derived, by updating the weights as described below in equation (4).
 Neural networks use a so-called threshold function to translate the inputs into one
output. The standard threshold function used for neural networks is a sigmoid function,
and it determines trust defined as the probability Pr[Tr] that the agent will cooperate with
its prospective partner:

 .
1

1]Pr[Me
Tr −+

= (3)

The higher the value of M, the higher the probability will be. The probability of not
trusting the other agent is 1 – Pr[Tr]. Since the initial weights are assumed to be zero, the
initial value of Pr[Tr] is 0.5.
 If a game is played, each agent receives feedback, F, on the experience. This
feedback is simply whether the partner cooperated or not. If the partner cooperated (F =
1), the agent adjusts the weights associated with the other agent’s symbols upward, so
that it will be more likely to trust that agent, and others displaying similar symbols, in the
future. On the other hand, if the partner defected (F = 0), the agent will adjust the same
weights downward, so that it will be less likely to trust that agent and others with similar
symbols. The equation to adjust the weights is as follows:

,])Pr[(ii xTrFw ⋅−⋅=Δ λ (4)

where Δwi is the adjustment to the ith weight, λ is the learning rate, F is the feedback, F-
Pr[Tr] is the difference between the agent’s level of trust in the other agent and the
observed trustworthiness of the other agent, and xi is the other agent’s ith symbol. In
effect, if the other agent displays the ith symbol, the corresponding weight is updated by
an amount proportional to the difference between the observed trustworthiness of an
agent and the trust placed in that agent. The weights of symbols associated with positive
experiences increase, while the weights of those associated with negative experiences
decrease, reducing discrepancies between the amount of trust placed in an agent and that
agent’s trustworthiness.

Strategies
When neither agent withdraws from playing a game, they have to decide to cooperate or
to defect. The agents are assumed conditionally to cooperate. I assume that the players
will estimate the expected utility for cooperation, E[U(C)], or defection, E[U(D)]. The
expected utility is determined by assuming that the level of expected trust of an agent in
its opponent, defined in (3), represents the probability that the opponent will cooperate:

))((])Pr[1(]Pr[)]([STSTrRTrCUE i −⋅+⋅−+⋅= β or (5)

PTrSTTTrDUE i ⋅−+−⋅−⋅=])Pr[1())((]Pr[)]([α . (6)

Given the two estimates of expected utility, the player is confronted with a discrete
choice problem which I address with a logit function. The probability to cooperate,
Pr[C], depends on the expected utilities and the parameter γ, which represents how
sensitive the player is to differences in the estimates. The higher the value of γ, the more
sensitive the probability to cooperate is to differences between the estimated utilities:

)]([)]([

)]([
]Pr[DUECUE

CUE

ee
eC ⋅⋅

⋅

+
= γγ

γ
. (7)

Model implementation
Based on the model description in the paper, the model is implemented in NetLogo, using
version 4.0. NetLogo is not the most appropriate package to implement this
computational intensive model. The replication was mainly performed for pedagogic
reasons.

References
Grimm, V., U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand,

S. Heinz, G. Huse, A. Huth, J.U. Jepsen, C. Jørgensen, W.M. Mooij, B. Müller, G. Pe’er, C.
Piou, S.F. Railsback, A.M. Robbins, M.M. Robbins, E. Rossmanith, N. Rüger, E. Strand, S.
Souissi, R.A. Stillman, R. Vabø, U. Visser, D.L. DeAngelis (2006) A standard protocol for
describing individual-based and agent-based models. Ecological Modelling 198:115-126

Janssen, M.A. (2008), Evolution of cooperation in a one-shot prisoner’s dilemma based on
recognition of trustworthy and untrustworthy agents, Journal of Economic Behavior and
Organization, 65: 458-471

