
1 MODEL DESCRIPTION 
 
This is a model description of a replication of the model described in Janssen (2008) in 
Netlogo. The original model was implemented in Java in 2002. 
 The model description follows the ODD protocol for describing individual- and 
agent-based models (Grimm et al. 2006) and consists of seven elements. The first three 
elements provide an overview, the fourth element explains general concepts underlying 
the model’s design, and the remaining three elements provide details. Additionally, 
details of the software implementation are presented. 
 
Purpose 
The purpose of this model is to study the conditions under which agents will cooperate in 
one-shot two-player Prisoner’s Dilemma games if they are able to withdraw from playing 
the game and can learn to recognize the trustworthiness of their opponents. When the 
agents display a number of symbols and they learn which symbols are important to 
estimate the trustworthiness of others, agents will evolve who cooperate in games in line 
with experimental observations. 
 
State variables and scales 
There are n agents in the population. Each generation they play a number of one-shot 
games against randomly drawn others. Each next generation consists a fraction of new 
agent whoms parents are selected from a pair wise competition. 
 
Process overview and scheduling 
In one generation a certain number (g) of games are played. For each of these, two agents 
are chosen at random. These agents then decide if they trust each other. If they do trust 
each other, they play the Prisoner’s Dilemma once and the resulting payoffs are added to 
their respective total scores.  

The average material payoff an agent has received from all its interactions (games 
played or games exited) with other agents is used to determine the offspring in the next 
generation. Each generation 10% of the population is replaced by new agents who are 
selected from the population (including those who previously left the system) using a 
tournament selection algorithm. Two contestants are picked at random from the 
population, and their average payoffs are compared. The one with the higher average 
payoff becomes a new agent. If both contestants have identical scores, the winner is 
picked at random.  

The genotype of the new agent (α, β, xi, wi) is copied from the parent and then may 
experience mutation. The mutation rates for strategies, symbols, and weights determine 
the probability or degree that each individual component will be mutated. In the case of 
the symbol, a mutation consists of flipping the component to the opposite state (0 (off) to 
1 (on) or vice versa). In the case of the motivations and weights, there is always a 
mutation draw from a Gaussian distribution with means equal to the parameter values 
after crossover.   

Note that the model includes two types of adaptation of the weights. Within a 
generation agents are able to update the weights in order to learn to recognize the agent 



types. Between generations agents derive weights from the previous generation, although 
those weights are somewhat altered by mutations. 
 
Design concepts 
Emergence. Emergence of other-regarding preferences of the agents that lead to 
cooperation  
Adaptation. Agents update the weights of their neural network during a generation by 
learning and between generation from imperfect inherence from their parents. They also 
inherent the symbols of their parents, as well as the other-regarding preferences. During a 
generation the population learn to recognize trustworthy others. 
Fitness. Payoff per interaction derived during a generation is used as the fitness indicator. 
Sensing. Agents can observe symbols of other agents. 
Interaction. Agents interact by proposing to play a game, playing a game by deciding to 
cooperate or defect. 
Stochasticity. Stochasticity exists in the probabilistic decision making, and the noise 
added to the inherence of the parameters of the next generation. 
 
Initialization 
The initial values of α are drawn from a uniform distribution between 0 and 1, and for β 
between 0 and 1, by which only initial conditions are accepted where β ≤ α. The initial 
values of the symbol xi, 0 or 1 for each, are chosen randomly, and all initial weights wi 
are set to 0. 
 
Input 

Parameter Value 
Number of agents (n) 
Number of symbols (s)  
Learning rate (λ) 
Steepness (γ) 
Number of games per generation (g) 
Mutation rate symbols  
Standard deviation mutation w  
Standard deviation mutation α, β 

100 
20 
1.0 
2 

500 
0.05 
0.1 

0.025 
 

Submodels 
The Game 
Each agent has three possible actions: cooperate (C), defect (D), or withdraw (W). If both 
players cooperate, they each get a payoff of R (reward for cooperation). If both players 
defect, they each get a payoff of P (punishment for defecting). If player A defects and B 
cooperates, A gets a payoff of T (temptation to defect), and B gets S (sucker’s payoff). If 
at least one of the players withdraws from the game, both players get a payoff of E (exit  
payoff). The resulting payoffs are given in Table 1. 
 
 
 
 



Table 1. Pay-off table of the Prisoner’s Dilemma with the option to withdraw from the game. 
Player B  

Cooperate Defect Withdraw 
Cooperate R,R S,T E,E 

Defect T,S P,P E,E 
Player 

A 

Withdraw E,E E,E E,E 
 
I assume that the costs and benefits of exit are such that the expected payoffs from 
choosing not to play are higher than those resulting from mutual defection, but lower than 
those expected from mutual cooperation. The Prisoner’s Dilemma is defined when T > R 
> E > P > S and 2R > T + S. In this situation the best option for any one move is to 
withdraw from the game. If one expects that the other agent will cooperate, the best 
option is to defect. If one expects that the other agent will defect, the best option is to 
withdraw. Since the game is symmetrical, each player comes to the same conclusion, so 
they both withdraw and end up with payoffs that are much lower than if they both trust 
that the other will cooperate. The pay-off matrix for the game is defined using T = 2, R = 
1, E = 0, P = -1, and S = -2.  
 Subjects always prefer more for themselves and the other person, but are more in 
favor of getting payoffs for themselves when they are behind than when they are ahead. 
The strength of such preferences is increasing in the magnitudes of parameters α and β. 
The utility can then be formulated as 
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where ui is utility of agent i, and πi is the monetary income of agent i. We define βi ≤ αi 
and 0 ≤ β ≤ 1. The α value can be regarded as the strength of an individual’s aversion to 
exploiting others, and β can be regarded as an individual’s degree of altruistic tendency. 
These α and β values determine the strategies of the agents to cooperate or not.  
 
To include the heterogeneity of motivations, I formulate the utility function in Table 2, 
where the material payoffs can be adjusted by individual motivations. 



Table 2. Utility pay-off table of the Prisoner’s Dilemma with the option to withdraw from the game. 
 

Player B  
Cooperate Defect Withdraw 

Cooperate R,R S+βA(T-S),T-αB(T-S) E,E 
Defect T-αA(T-S),S+βB(T-S) P,P E,E 

Player 
A 

Withdraw E,E E,E E,E 
 

An agent has three elements: (1) the set of symbols that it displays, (2) the strategy that it 
uses to decide whether to trust or not another agent, and (3) the strategy it uses in 
Prisoner’s Dilemma games. 
 The symbols are represented in the following way. Each agent has s symbols that 
can have value 0 or 1, where 0 means no display of the symbol and 1 means display of 
the symbol. The other two elements require more discussion.  
 
Trust 
The rule an agent uses to decide to trust the other agent, and thus be willing to play a 
Prisoner’s Dilemma game, is represented as a single-layer neural network. A neural 
network has s inputs, which are the values 0 and 1 of the other agent’s symbols. A 
weighted sum M of these inputs is calculated using the following equation: 

,
1

0 ∑
=

+=
s

i
ii xwwM          (2) 

 
where w0 is the bias, wi is the weight of the ith input, and xi is the ith input. Initially, all 
weights are zero, but during the simulation the network is trained, when new information 
is derived, by updating the weights as described below in equation (4). 
 Neural networks use a so-called threshold function to translate the inputs into one 
output. The standard threshold function used for neural networks is a sigmoid function, 
and it determines trust defined as the probability Pr[Tr] that the agent will cooperate with 
its prospective partner: 
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The higher the value of M, the higher the probability will be. The probability of not 
trusting the other agent is 1 – Pr[Tr]. Since the initial weights are assumed to be zero, the 
initial value of Pr[Tr] is 0.5. 
 If a game is played, each agent receives feedback, F, on the experience. This 
feedback is simply whether the partner cooperated or not. If the partner cooperated (F = 
1), the agent adjusts the weights associated with the other agent’s symbols upward, so 
that it will be more likely to trust that agent, and others displaying similar symbols, in the 
future. On the other hand, if the partner defected (F = 0), the agent will adjust the same 
weights downward, so that it will be less likely to trust that agent and others with similar 
symbols. The equation to adjust the weights is as follows: 
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where Δwi is the adjustment to the ith weight, λ is the learning rate, F is the feedback, F-
Pr[Tr] is the difference between the agent’s level of trust in the other agent and the 
observed trustworthiness of the other agent, and xi is the other agent’s ith symbol. In 
effect, if the other agent displays the ith symbol, the corresponding weight is updated by 
an amount proportional to the difference between the observed trustworthiness of an 
agent and the trust placed in that agent. The weights of symbols associated with positive 
experiences increase, while the weights of those associated with negative experiences 
decrease, reducing discrepancies between the amount of trust placed in an agent and that 
agent’s trustworthiness. 
 
Strategies 
When neither agent withdraws from playing a game, they have to decide to cooperate or 
to defect. The agents are assumed conditionally to cooperate. I assume that the players 
will estimate the expected utility for cooperation, E[U(C)], or defection, E[U(D)]. The 
expected utility is determined by assuming that the level of expected trust of an agent in 
its opponent, defined in (3), represents the probability that the opponent will cooperate:  
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Given the two estimates of expected utility, the player is confronted with a discrete 
choice problem which I address with a logit function. The probability to cooperate, 
Pr[C], depends on the expected utilities and the parameter γ, which represents how 
sensitive the player is to differences in the estimates. The higher the value of γ, the more 
sensitive the probability to cooperate is to differences between the estimated utilities: 
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Model implementation 
Based on the model description in the paper, the model is implemented in NetLogo, using 
version 4.0. NetLogo is not the most appropriate package to implement this 
computational intensive model. The replication was mainly performed for pedagogic 
reasons. 

 
References 
Grimm, V., U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, 

S. Heinz, G. Huse, A. Huth, J.U. Jepsen, C. Jørgensen, W.M. Mooij, B. Müller, G. Pe’er, C. 
Piou, S.F. Railsback, A.M. Robbins, M.M. Robbins, E. Rossmanith, N. Rüger, E. Strand, S. 
Souissi, R.A. Stillman, R. Vabø, U. Visser, D.L. DeAngelis (2006) A standard protocol for 
describing individual-based and agent-based models. Ecological Modelling 198:115-126 

Janssen, M.A. (2008), Evolution of cooperation in a one-shot prisoner’s dilemma based on 
recognition of trustworthy and untrustworthy agents, Journal of Economic Behavior and 
Organization, 65: 458-471 

 


