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I. INTRODUCTION

This document serves as the collection of supplementary
material produced for the paper ”Extreme Environments Per-
petuate Cooperation”. Section 1 contains an ODD+D descrip-
tion of NeoCOOP model used in this work, Section 2 contains
a summary of the experiment design, Section 3 details the
parameter tuning process of NeoCOOP, Section 4 contains
plots of the evolution of each individual scenario investigated
and Section 5 contains figures of all the other results produced
in this work that didn’t make it into the final paper.

II. ODD+D DESCRIPTION OF NEOCOOP

A. Purpose

1) What is the purpose of the study?: The general purpose
of NeoCOOP is to be a model by which we can simulate the
Paleolithic-Neolithic transitionary period that saw humanity
move from largely egalitarian hunter gatherer groups to
agrarian super polities typically ruled by a social elite.

2) For whom is the model designed?: This model is de-
signed primarily for Computational Archaeologists. The model
will also be of interest to Computational Social Scientists
interested in the modelling of complex social phenomena and
the Artificial Life community in general.

B. Entities, State Variables and Scales

1) What kinds of entities are in the model?: There are four
kinds of entities within NeoCOOP:

1) Households: They are the primary decision making
entity in NeoCOOP (the agents). They represent a col-
lection of occupants ruled by a patriarchal figure.

2) Occupants: Occupants are contained within households.
They are not decision making entities and are only
present to determine household resource gathering and
consumption levels.

3) Settlements: Settlements represent a collection of
households. They are also not decision making entities
but are used by several of the model’s systems for
simulating / restricting agent adaptation.

The model represents its environment as a nxm grid-world.
Each cell in the grid can technically be thought of as an
entity but, their primary purpose is to store local geographical
information.

2) By what attributes(i.e. state variables and parameters)
are these entities characterized?: Environment Cell:

1) Resources: Amount of resources ∈ [0, 1] at a given cell.
2) Slope: The slope (◦) in a given cell.
3) Is Owned: An integer value that indicates if an environ-

mental cell is owned and by whom (-1 for not owned).
4) Is Settlement: An integer value that indicates if an envi-

ronmental cell is a settlement (-1 for not a settlement).
Household:
1) Resources: Amount of resources an agent has.
2) Load: The amount of (decayed over time) resources the

agent has donated to other agents.
3) Occupants: A list of occupants in the current Household.
4) Hunger: A value ∈ [0, 1] that denotes the agent’s hunger.
5) Satisfaction: A value ∈ [0, 1] that denotes how happy

the agent is with its living conditions.
6) Owned Land: A list of all of the land currently owned

by the agent Household.
7) Storage Decay: A list storing the history of agent re-

source acquisitions.
8) Able Workers: The number of able workers the House-

hold has at its disposable (This value is equal to the
number of occupants whose age is greater than the
age of maturity).

9) Peer Resource Transfer Chance: The likelihood ∈ [0, 1]
of an agent accepting a resource transfer request from a
peer agent.

10) Subordinate Resource Transfer Chance: The likelihood
∈ [0, 1] of an agent accepting a resource transfer request
from a subordinate agent.

11) Conformity (σ): The degree to which an agent accepts
cultural influence.

12) Attachment (α): How much an agent values its current
settlement. An agent with a high degree of attachment
is less likely to migrate even if the environmental
conditions suggest that it should.

Occupant / Individual: are only classified by a unique
identifier and an age property which denotes how many
iterations the occupant has been alive for.

3) What are the exogenous factors/drivers of the model?:
Climate Change. Specifically an increasing / decreasing
likelihood of drought over time.

4) If applicable, how is space included in the model?: The
environment is a grid-world made up of equally sized cells.



NeoCOOP supports using GIS layers to add environmental
information to the environment. This includes but, is not
limited to, height, slope, water and sand content data inputted
into the model as images where each pixel in the image
represents the value of a given attribute at that pixel coordinate
in the grid-world.

For this work, we replaced the vegetation model with a
simpler resource gathering system similar to Angourakis et
al. [1]’s work. The details of the changes are detailed later
but, the spatially explicit grid-world is still used.

5) What are the temporal and spacial resolutions and
extents of the model?: One iteration in NeoCOOP represents
a single year. The soil moisture system does calculate total
soil moisture (mm) on a per month basis, but it is entirely
self-contained to the vegetation model systems (Global
Envrionment System, Soil Moisture System and Vegetation
Growth Systems). Each grid cell is 1ha in size and the total
size of the grid-world is configurable in height and width mxn.

For this work, the soil moisture system was removed
because it formed part of the vegetation model. The resource
generation system we replaced it with operates on a execute
once per iteration basis. We further constrained the environ-
ment such that it is always square (ie: of size n× n).

C. Process Overview and Scheduling

1) What entity does what and in what order?: The order
of execution can be seen in Figure 1.

Fig. 1: Execution Cycle of NeoCOOP

D. Theoretical and Empirical Background

1) Which general theories concepts, theories or hypotheses
are underlying the model’s design or at the level(s) of the
submodel(s) (apart from the decision model)? What is the link

to complexity and purpose of the model?: The Agent-based
component of the model is also loosely based on the work of
Chliaoutakis and Chalkiadakis [2], [3] and the model makes
use of their self-organization scheme for simulating emergent
social hierarchies.

Our Agent’s resource trading preferences are probability-
based. This is an extension to the typically simple cooperative
- defective approach. Each agent has a probability p associated
with its resource trading preferences and every time a resource
trading request needs to be decided on, a random number is
generated ∈ [0, 1] and the number is less than p, the resource
transfer request is granted.

This work takes inspiration from Angourakis et al. [1]’s
and Molin et al’s [4] methods of generating resources
every iteration. More specifically we blend is Molin et al.’s
periodically induced environmental stress and Angourakis et
al.’s restricting of resources between two predefined ranges
respectively. (Our exact approach is detailed later)

2) On what assumption is/are agents’ decision model(s)
based?: The model assumes that resource trading preferences
can be simulated as a stochastic process. Additionally, it
assumes that all households were ’ruled’ by a single individual
and that personal storage is the preferred method of resource
storing (as opposed to collective resource pooling or some
other hybrid approach).

3) Why is a/are certain decision model(s) chosen?: Most
of the model’s input parameters are based on published works
or publicly available data. Table I provides said references
and where no references are made, NeoCOOP is tuned using
Optuna.

Optuna performs multi-objective optimization maximizing
total population and resources levels in the last iteration.
These measures are used because a greater population level
is indicative of a more successful parameter configuration
and we also consider total resources because having a higher
population level with more resources is a greater indicator of
success than an equally large population with no resources.

4) If the model/ a submodel is based on empirical data,
where does that data come from?: See Table I.

5) At which level of aggregation were the data available?:
It varies from source to source. Table I clarifies how the data
was derived.

E. Individual Decision Making

1) What are the subjects and objects of decision-making?
On which level of aggregation is decision-making modelled?
Are multiple levels of decision making included?: The
decision making units are Households.



When the vegetation model is present, agents choose to
FARM or FORAGE actions, every iteration, equal to the
number of able workers (An able worker is an agent who is
older than or equal the agent of maturity property. Agents
are restricted to choosing one action or the other, in fact,
agents may choose to have some of their occupants farm, and
the rest will forage.

In this work, agents claim a single land cell and gather
resources from it directly (using an abstract resource
acquisition method). Unless an agent move, it will just gather
resources from the same cell every iteration.

2) What is the basic rationality behind agents’ decision-
making? Do agents pursue an explicit objective or have
other success criteria?: Explicitly, the agents perform Utility
maximization. This results in the agents implicitly trying to
minimize their hunger and maximizing their social status.

3) How do agents make their decisions?: For resource
acquisition, the agents follow the standard e-greedy approach
in reinforcement learning. The agents use their hunger as
ϵ to determine whether the should take a greedy action, or
a random (exploratory) action. Agents will then update the
utility values of each action based on the reward (food)
received.

For resource transfer, the agents will look at their peer
and subordinate resource transfer properties to determine if
they are willing to donate resources for a given iteration. The
first time an agent is asked (for both peer and sub requests),
a random number ∈ [0, 1] is generated and compared to
the aforementioned resource transfer beliefs. If the random
number is lower than the resource transfer beliefs, the agent
will donate its resources.

For moving, the agent will look at its satisfaction and
a generated random number (both ∈ [0, 1]). If the random
number is greater than the satisfaction, the agent will move.
Agents will first look at neighbouring settlements, if none of
them look desirable (average resources of settlement ¡ required
resources of agent), the agent will make a new settlement
at random location. There is an additional property called
lookback sids which prevents the agent from going back
to the same settlements until it has explored additional options.

4) Do the agents adapt their behaviour to changing
endogenous and exogenous state variables? And if yes,
how?: Yes, as outlined above agents will seek to explore
alternative resource acquisition strategies when their current
strategy does not work. Similarly, agents will move from
one settlement to another when their overall satisfaction is low.

5) Do social norms or cultural values play a role in the
decision making process?: Yes, if multiple agents decide to
leave a settlement in the same iteration, they will all move to

the same location.

6) Do spacial aspects play a role in the decision making
process?: Yes, agents can only farm / forage within a
specified max acquisition distance. Similarly, the distance an
agent can travel when moving from one settlement to another
can be controlled by the vision square property.

For this work, these properties were set such that an agent
could move to any settlement on the grid-world. Similarly, no
penalties for the distance from the settlement and the agent’s
resource cell were applied.

7) Do temporal aspects play a role in the decision making
process?: Yes, agents only decide whether or not to move
every yrs per move iterations.

8) To which extent and how is uncertainty included in the
agents’ decision rules?: Not Applicable.

F. Learning
1) Is individual learning included in the decision process?

How do agents’ change their rules over time as consequence
of their experience?: Yes, agents typically follow a standard
reinforcement learning approach to determine which action
(farm or forage) to take (See submodels for more details).
In this work this was disabled due to the removal of the
vegetation model.

2) Is collective learning implemented in the model?:
Yes, in the form of generational adaptation. Agents, using
a genetic algorithm and a cultural algorithm to exchange
information regarding the beliefs (See submodels for more
details).

G. Individual Sensing
1) What endogenous and exogenous state variables are

individuals assumed to sense and consider in their decisions?
Is their sensing process erroneous?: It is not erroneous and
the agents don’t explicitly detect any of the environments
properties. What they are aware of though is their hunger,
satisfaction and the perceived utility of the forage and farm
actions.

2) What state variables of which other individuals can
an individual perceive? Is the sensing process erroneous?:
Agents are aware of the average resource levels of the
neighbouring settlements. They are indirectly aware of the
general beliefs held by their settlement (captured in their
belief space).

3) What is the spatial scale of sensing?: Agents are able
to sense the vegetation density (or resource availability) and
cells they own within max acquisition distance cells around
them.



4) Are the mechanisms by which agents obtain information
modelled explicitly, or are individuals simply assumed to
know these variables?: It is assumed.

5) Are costs for cognition and costs for gathering informa-
tion included in the model?: Not explicitly.

H. Individual Prediction

Agents do not make any explicit predictions.

I. Interaction

1) Are interactions among agents and entities assumed
as direct or indirect??: Cultural Influence occurs indirectly
while resource transfer is direct.

2) On what do the interactions depend?: Resource transfer
requires that agents belong to the same settlement. Cultural
Influence depends on the social status of the two ’interacting’
agents.

3) If the interactions involve communication, how are such
communications represented?: Not Applicable.

4) If a coordination network exists, how does it affect the
agent behaviour? Is the structure of the network imposed or
emergent?: Not Applicable.

J. Collectives

1) Do the individuals form or belong to aggregations
that affect and are affected by the individuals? Are these
aggregations imposed by the modeller or do they emerge
during the simulation?: Yes. As mentioned above agents
are may form settlements. The simulation does not enforce
settlements (except at initialization). Agents may form new
settlements, leave old ones or even move to other settlements
every yrs per move iterations. An agent always needs to
belong to a settlement (so that the adaptation submodels can
work) but it is entirely possible that a simulation run may
result in every agent forming their own settlement. This is
equivalent to having no settlements since each household will
adapt individually.

2) How are collectives represented?: As noted above. A
collection of one or more households makes a settlement.

K. Heterogeneity

1) Are the agents heterogeneous? If yes, which state
variables and/or processes differ between the agents?: Yes.
All variables listed in Section 2.B.2.

2) Are the agents heterogeneous in their decision-making?
If yes, which decision models or decision objects differ be-
tween the agents?: Yes. All agent decisions are heterogeneous.
This includes resource acquisition, resource transfer and relo-
cation.

L. Stochasticity

1) What processes (including initialisation) are modelled by
assuming they are random or partly random?: All stochas-
tic processes are pseudorandom. This is to ensure model
reproducibility. A list of stochastic processes during model
execution are listed below:

1) Monthly Global Environment (rainfall, temperature and
solar radiation) values. This includes the direct resource
generation approach used in this work.

2) Agent explorative action selection (e-greedy).
3) Agent farm / forage resource gathering patch selection.
4) Household birth.
5) Household death.
6) Resource Transfer Requests.
7) House Split Parent Selection (Genetic Algorithm)
8) Household Split Mutation (Genetic Algorithm).
9) Household Influence knowledge source selection (Cul-

tural Algorithm)
10) Household Move decision.
A list of stochastic processes at initialization are listed

below:
1) Settlement placement.
2) Agent initial gene creation.
3) Agent settlement placement.

M. Observation
1) What data are collected from the ABM for testing,

understanding and analysing it, and how and when are
they collected?: Snapshots of the model are collected every
(user-defined) iterations. These snapshots capture all of the
necessary aspects for, essentially, recreating the simulation
run from the ground up.

All environment data is collected in csv files. All agent
and settlement data is collected in JSON files. A log file of
the simulation is also recorded which records the result of
every stochastic process the model simulates.

2) What key results, outputs or characteristics of the model
are emerging from the individuals? (Emergence): This is
heavily reliant on the input parameters of the model but the
key emergent properties are list below:

1) Regardless of initial agent distribution, the agents mean
resource trading beliefs (peer and subordinate) will
converge to the range ∈ [0.4, 0.6].

2) As environmental stress is increased, social stratification
of the peer and subordinate transfer beliefs will occur.

3) Subordinate Ostracization occurs as the frequency of
environmental stress increases.

4) As the frequency of environmental stress increases, so
does agent attachment towards their current settlement.

N. Implementation Details

1) How has the model been implemented?: The model
was implemented in Python 3 using the ECAgent framework.



2) Is the model accessible, and if so where?: Yes, it is pub-
licly available at: https://github.com/BrandonGower-Winter/
NeoCOOP.

O. Initialization

1) What is the initial state of the model world, i.e. at time
t = 0 of a simulation run?: Agents have been randomly
allocated to settlements. Settlements have been randomly
placed. All agents have zero resources and zero load. The rest
of the initial conditions are based on the decoder file used to
create the simulation.

2) Is the initialisation always the same, or is it allowed to
vary among simulations?: It varies depending on the seed
used. If the same seed is used, the initialization (and model
execution) will be exactly the same.

3) Are the initial values chosen arbitrarily or based on
data?: Randomly. If agent homogeneity is enforced, the
model will not randomly assign agents to each settlement (all
settlements will be given the same number of starting agents)
but the settlement locations will still be random.

P. Input Data

1) Does the model use input from external sources such as
data files or other models to represent processes that change
over time?: Yes. NeoCOOP uses what we call decoder files.
They share the same structure as table I (in JSON format)
and are given to the model at initialization. The model also
takes in a heightmap, sandcontent map and slopemap (usually
derived from the heightmap). In this work, only a heightmap
was needed which we just set to a flat plain.

Q. Submodels

1) What, in detail, are the submodels that represent the
processes listed in ‘Process overview and scheduling’?: Un-
like most cooperation-based ABMs, NeoCOOP allows agents
to make decisions based on their social status and the social
status of the agents they are interacting with. In NeoCOOP,
social status is defined as the sum of an agent’s available
resources and its load where load is the amount of resources
the agent has donated over a period of time. To facilitate social
stratification, we use the self-organization scheme described by
[2] whereby a relationship type can be determined for every
agent pair by comparing their social statuses. We define each
of the relationship types as follows:

is acq(h1, h2) = h1.settlement == h2.settlement (1)

is peer(h1, h2) =
|h2.ss− h1.ss|

max(h1.ss, h2.ss)
< L (2)

is auth(h1, h2) =
(h2.ss− h1.ss)

max(h1.ss, h2.ss)
> L (3)

is sub(h1, h2) = is auth(h2, h1) (4)

Where is acq, is peer, is auth, is sub describe whether
household h2 has an acquaintance, peer, authority or
subordinate relationship with household h1 respectively.
hn.ss is a household’s social status. L is the load difference
∈ [0, 1] input parameter which describes how much more
social status an agent requires to be considered an authority
over another agent. Note that in order for a peer, authority
or subordinate relationship to be formed, the two households
must be from the same settlement (ie: is acq = true).

Environment & Vegetation Model:
NeoCOOP places agents on a n× n grid-world. Each cell on
the grid contains resources ∈ [0, 1] that are assigned to it every
iteration. Stress is applied to these cells by varying the amount
of collectable resources received each iteration according to
sine waves of different frequencies. Denoting f as the desired
number of stress waves, we linearly interpolate (Equation
6) every iteration i between two predefined ranges called
max resources = [0.4, 1.0] and min resources = [0.0, 0.6]
using the the output of the sine waves (Equation 5) at iteration
i/M as the mixing parameter x. This approach blends work by
Molin, Kanwal and Stone [4] and Angourakis et al. [1] where
environmental stress is induced periodically and between to
predefined ranges respectively. This approach allows us to
simulate a wide variety of stress scenarios ranging from short,
but frequent, periods of stress (at high f ) to longer, infrequent,
periods of stress (at low f ). Averaged over an entire simulation
run, a household is expected to receive a total of 0.5 resources
per iteration. An example of what the result of this process
looks like can be seen in Figure 2.

s(x) = 0.5sin(2π.x.f) + 0.5 (5)

lerp(rmin, rmax, x) = rmin + s(x) ∗ (rmax − rmin) (6)

The motivation for choosing a spatially explicit environment
is because even ideal environments have a carrying capacity.
Most spatially implicit ABMs do not consider population
carrying capacity which limits their capabilities of accessing
cooperative behaviour dynamics between two distinct
population groups (those with and without direct access to
resources).

Resource Acquisition, Transfer and Consumption:

Every iteration, agents gather resources from a patch of
land that they own. The amount of resources gathered is
equal to the full amount of resources available at said patch.
These resources are then put into the agent’s storage. In this
work, agents are only allowed to own one patch of land. If
an agent does not own any land, it will try to claim some by
looking at its settlement’s neighbouring cells. An agent that
does not own any land will not receive any resources during
the resource acquisition phase.

https://github.com/BrandonGower-Winter/NeoCOOP
https://github.com/BrandonGower-Winter/NeoCOOP


Fig. 2: Example of the available resources on a single environ-
ment cell over the course of the simulation run when f = 4.

Once acquisition is complete, agents determine if they have
enough resources to satisfy their needs for the iteration. An
agent needs to consume 0.5 resources per iteration to avoid
the risk of dying. If an agent does not have enough resources,
it first asks its authority agents if they would be willing to
donate some of their excess resources. For each authority
asked, a random value ∈ [0, 1] is generated and compared
to the authority agent’s subordinate transfer property. If the
generated value is less than the subordinate transfer property,
the authority agent is willing to grant donations for that
iteration. Whenever a donation is granted, the authority agent
has its load property increased by the resources donated. If an
agent has asked all of its authority agents for resources and
it will still go hungry, it then repeats this process for its peer
relationships with the donating agent using its peer transfer
property to determine if the donation succeeds.

If that is still not sufficient, the agent will then ask
all of its subordinates for resources. Given that we are
modelling Neolithic households, if a subordinate is asked
to give any of its excess resources to an authority agent,
it does so with 100% certainty. The peer and subordinate
transfer properties allow us to simulate agent types that
exhibit varying degrees of altruistic and selfish behaviour.
For example, an agent may exhibit nepotistic tendencies
whereby it is is more likely to grant resource donations to
its peers (high peer transfer) but less likely to grant the
same donations to its subordinates (low subordinate transfer).

When resource transfer is complete, agents consume their
resources and determine their hunger using equation 7.

hunger(h) = min(
h.resources

h.required resources
, 1.0) (7)

Population Growth, Loss and Migration:

Every iteration, households may birth additional households
in accordance with the birth rate and their hunger (Equation
8). When this occurs, the split household function is called

and the household is divided into two separate households.
Resources are split amongst the two new households but load
is not. That is, the new household signifies the arrival of a new
patriarchal figure in the community and one who must work
to gain the same social status as their parent household.

birth(h) = random() < h.hunger ∗ birth rate (8)

Households may lose one or more occupants in accordance
with the death rate and their hunger (Equation 9). If a
household dies of starvation, it is removed from the simulation.

death(h) = random() ∗ h.hunger < death rate (9)

Agents can migrate to another settlement or form a set-
tlement of their own every yrs per move iterations. This
decision is based on the agent’s satisfaction and its attachment.
Satisfaction is the average hunger of the agent over the past
yrs per move iterations. The boolean function for determining
if an agent will move is described by Equation 10.

move(h) = 2αh ∗ satisfaction(h) < random() (10)

Where α is the attachment of household h and random()
returns a random value ∈ [0, 1]. If the satisfaction of the agent
is low, it is more likely to move. This is partly mediated by
the agent’s attachment which when < 0.5, makes the agent
skittish and when > 0.5 makes the agent more likely to stay
at a given location regardless of its objective circumstances.
In population migration research, the inverse of satisfaction
is often called grievance [5].

When an agent moves, it chooses between all settlements in
its vicinity or an unclaimed cell. Typically, an agent will move
to the settlement with the most resources. However, if none of
the neighbouring settlements have an average resource value
≥ 0.5, the agent will choose to make its own settlement at a
new, randomly chosen, location.

Agent Adaptation:
In this model, agent adaptation uses two evolutionary algo-
rithms: a Genetic Algorithm (GA) [6] for vertical generational
adaptation and a Cultural Algorithm (CA) [7] for horizontal
generational adaptation. Both the GA and CA utilize the agent
genotype described before and a concept called influence.
Influence is used to determine best performing settlements and
describes the probability that two settlements will interact with
each other. This is done using XTENT [3] (Equation 11):

I(s1, s2) = W (s2)
β −mD(s1, s2) (11)

Where, s1 and s2 are settlements, I(s1, s2) is the influence
of s2 on s1, W (s2) is the social status of s2, D(s1, s1) is
distance from s1 to s2. β and m are coefficients describing the
required social status of one settlement to influence another.



Calculating the influence of every settlement on a given
settlement, gives a probability distribution (equation 12).

P (s1, s2) =
I(s1, s2)∑

k∈K I(s1, sk)
(12)

Where P (s1, s2) is the probability of settlement s2
influencing settlement s1 and K is the set of neighbouring
settlements that have a positive influence value I(s1, sk) on s1.

The GA executes whenever the split household function
is called. The child agent produced is a combination of
two parents with the first parent being the household that
called the split household function and the second parent
gotten via roulette wheel selection [6]. This selection uses the
social status of other agents within the same settlement of
the first parent and from other settlements that have enough
influence (I(s1, s2) > 0). The offspring agent is produced
using Uniform crossover and random mutation.

The CA uses Knowledge Sources [8] to diversify how agents
are influenced. These are:

• Normative: Influence on agent genes from its settlement.
• Spatial: Influence on agent genes from another settle-

ment.
• Domain: Equivalent to GA mutation function, where

domain influence mutates one of the agent’s genes.
Every influence frequency iterations, agents are influenced

in accordance with the influence rate. If an agent is selected
for influencing, a roulette wheel is spun to determine from
which knowledge source influence will come from. Influence
from the Domain knowledge source occurs at a rate defined
by the mutation rate parameter. Influence from the Normative
and Spatial knowledge sources occur with varying probability
defined by equations 13 and 14.

N(sh, si) = max(
sh.ss

si.ss
, 1.0) (13)

S(sh, si) = 1.0−N(sh, si) (14)

Where, N and S are the probability of choosing the
Normative and Spatial knowledge sources respectively,
sh is the settlement of the agent being influenced, si is
the settlement that would influence agent h. If the spatial
knowledge source is selected. si is determined by performing
roulette wheel selection on all neighbouring settlements
with a positive influence on settlement sh. Roulette wheel
weights are determined by the values returned by Equation 12.

Each settlement’s beliefs are represented by Belief Spaces
Bs. Belief Spaces have the same structure as the agent
genotype with each property calculated using a weighted
average of the corresponding property of all agents within
that settlement. The weight an agent contributes to the belief
space is determined using its social status relative to the social
status of the other agents in the same settlement. If an agent

is influenced by the normative knowledge source, the belief
space that influences it is the belief space of the settlement
the agent belongs to Bsh . If the agent is influenced by the
spatial knowledge source, the belief space that will influence
the agent is the belief space of the settlement selected during
roulette wheel selection (Bsi ). Agent properties are influenced
as follows (equation 15):

Gh,t+1(p) = Gh,t(p) + σh(Bs,t(p)−Gh,t(p)) ∗ Φ(h,Bs,t)
(15)

Where, p is the agent property (genes 1-4), t is the timestep,
G is the agent’s genotype, σh is the conformity of the agent,
B is the selected belief space (Bsh or Bsi ) and Φ is the
Homophily term which returns a value ∈ [0, 1] describing
how similar the agent’s genes are to the belief space that
is influencing it. Homophily is a sociological principle that
describes the tendency for individuals that are similar, either
biologically or culturally, to gather together. The value of Phi
is 1.0 for interacting entities that have exactly the same genes,
and close to 0.0 for entities whose gene values are further
apart. This approach is similar to interaction probability in
Axelrod’s cultural dissemination model [9]. In our model, Φ
limits the degree to which an agent is influenced if the belief
space influencing it contains drastically different gene values.
Formally, Φ is one minus the average absolute difference
between the agent and influencing belief space’s genes.

2) What are the model parameters, their dimensions and
reference values?: See Table I

3) How were the submodels designed or chosen, and how
were they parameterised and then tested?: Parameter tuning
the model involved using values derived from other works and,
where no parameters could be be found, we performed multi-
objective optimization using Optuna. The optimization process
ran for 119 simulation runs and final input parameters for our
model can be seen in Table I. A report of the optimization
process is outlined in Section 4.

III. EXPERIMENT DESIGN

Before running our experiments, we parameter tuned our
model, a report of which is described in Section 4. Given our
goal to find the environmental conditions under which social
stratification occur, we ran our experiments as follows.

We first defined initial resource trading belief distributions
for the agent types (denoted [A,S, F ]). For purely altruistic A
initialization, agents have their peer and sub transfer properties
initialized to 1.0. For purely selfish S initialization, agent
peer and sub transfer properties are set to 0.0 and the mixed
population F scheme initializes the agents’ resources trading
beliefs such that half of them follow the A initialization
scheme and the other half follow the S initialization scheme.
We use differing initialization schemes since the initial
resource trading beliefs of an agent population may affect
how they evolve over time.



When then defined the stress scenarios investigated as
follows: f ∈ [1, 2, 4, 8, 16, 32, 64, 128] . We also explore
two scenarios in which environmental stress is confined to
the range [0.4, 1.0] (non-existent) and [0.0, 0.6] (perpetual) .
These two scenarios are denoted as N and P respectively.
The motivation for choosing the aforementioned frequencies
is based on preliminary experiments where it was observed
that selfish behaviour could emerge at low f -values. We then
expanded the scope of the experiments to include higher
f -values to see if this trend persisted.

Using the three initialization schemes and 10 f -values, 30
scenarios where created. For each scenario, 50 simulations
were run for a total of 1500 simulations across all scenarios.
Each simulation was initialized with 100 agents and 10 set-
tlements. At initialization, each agent in the model had their
peer transfer and sub transfer agent properties set to either
1.0 or 0.0 depending on the initialization scheme (A scenario
denoted as 16A indicates that the A initialization scheme was
used with an f -value of 16). Settlements were randomly placed
on the grid-world and the model was run for M = 10000
iterations. All stochastic processes utilized a pseudo-random
number generator to ensure reproducibility.

As highlighted in the results section of the paper, additional
experiments were also run for the F initialization scheme
for frequencies f = [24, 40, 48, 56]. The same process of
50 repeated realizations initialized with 100 agents and 10
settlements for each new scenario for a total of 200 additional
simulation runs.

IV. PARAMETER TUNING

A. Optuna

NeoCOOP is parameter tuned using multi-objective
optimization in Optuna. The process sought to maximize a
simulation run’s total population and total resources. The
motivation for this is because a higher population level is
indicative of a more resilient agent and because resources are
essential to their survival, agents who are able to maintain
a higher degree of surplus resources are more successful
that agents that have not. Note that we do not care about
the distribution of the resources per agent and only consider
mean surplus resources across all agents. This is to ensure
that we do not favour one type of organizational scheme over
another (Authoritarian vs. Egalitarian)

The optimization process was intended to run for 150
simulations (31 of them did not complete because of a power
outage) so the final results of the 119 that did finish are
included below: (This can all be replicated using Optuna.py):

Pareto Optimal Solutions:
[{

’influence_frequency’: 6,
’influence_rate’: 0.0516647,
’mutation_rate’: 0.130285,
’learning_rate_lower’: 0.200033,

’learning_rate_upper’: 0.995248
}.
{

’influence_frequency’: 9,
’influence_rate’: 0.0573575,
’mutation_rate’: 0.0772241,
’learning_rate_lower’: 0.0683736,
’learning_rate_upper’: 0.125681

},
{

’influence_frequency’: 15,
’influence_rate’: 0.195384,
’mutation_rate’: 0.110884,
’learning_rate_lower’: 0.00644802,
’learning_rate_upper’: 0.856429

},
{

’influence_frequency’: 16,
’influence_rate’: 0.179273,
’mutation_rate’: 0.0444818,
’learning_rate_lower’: 0.0820841,
’learning_rate_upper’: 0.763823

},
{

’influence_frequency’: 16,
’influence_rate’: 0.111578,
’mutation_rate’: 0.0978724,
’learning_rate_lower’: 0.17061,
’learning_rate_upper’: 0.786016

},
{

’influence_frequency’: 18,
’influence_rate’: 0.111578,
’mutation_rate’: 0.0978724,
’learning_rate_lower’: 0.334526,
’learning_rate_upper’: 0.760217

}]

Average Results:
{

’influence_frequency’: 13.333333333333334,
’influence_rate’: 0.11780586666666665,
’mutation_rate’: 0.09310328333333333,
’learning_rate_lower’: 0.14367912,
’learning_rate_upper’: 0.714569

}

For simplicity, each value was rounded to nearest appropri-
ate number:

Final Results:
{

’influence_frequency’: 15,
’influence_rate’: 0.1,
’mutation_rate’: 0.1,
’learning_rate_lower’: 0.15,
’learning_rate_upper’: 0.70



}

V. RESOURCE TRANSFER BELIEF PLOTS

As highlighted in our paper, a Wilcoxon rank-sum test
(p = 0.05) revealed that for all f ≥ 8, significant stratification
occurred between the peer and subordinate transfer properties.
Figures 3 to 12 showcase the evolution of each of the 30 stress
scenario initialization scheme combinations investigated. In
the these figures, the shaded regions represent 1 standard
deviation from the mean.

As shown in Figures 7 to 11, clear visual evidence
of stratification between the two resource transfer beliefs
can be seen which agents evolving more selfish behaviour
towards their subordinates at higher frequencies. In particular,
oscillation of the mean subordinate transfer property in
Figures 7 and 8 show the direct the effect environmental
stress has on the emergence of selfish behavior towards
subordinates. These figures show clear empirical evidence
supporting the theory that selfish behaviour is is the result of
frequent environmental stress.

As noted in the main paper, the magnitude of the strat-
ification was not consistent across all scenarios. Figure 14
showcases this trend which suggested that peak stratification
occurred somewhere around the f = 16 scenarios. This is
what led to us conducting the additional experiments with the
F initialization scheme whose results are plotted in Figure
13. Again, the Wilcoxon rank-sum tests (p = 0.05) indicated
significant stratification of the resource trading beliefs.

VI. THE EVOLUTION OF HOUSEHOLD ATTACHMENT

The last aspect of our results that we would like to discuss
pertain to the evolution of the attachment property. Figure 15
showcases the evolution of this property for all 30 scenario
combinations investigated. Attachment positively correlated
with environmental stress frequency suggesting that in times
of extreme stress, a high degree of mobility is favoured.
When stress is frequent but, not harsh, attachment is high.

These results were very promising as the behaviour
exhibited by these agents are the same as those described
in Lewis et al. [10] where it was found that a sedentary
lifestyle would lead to death in extreme environmental stress
scenarios. Bands or groups would frequently move around
to ensure they were maximizing their resource acquisition
opportunities. Similarly, the bands were typically egalitarian
which is exactly the type of behaviour we saw from our
agents (In harsh environments, there was no significant
distinction between the peer and subordinate transfer beliefs).

There is certainly future research opportunity here. Our
current results show promise but, to efficiently study popu-
lation migration dynamics of Neolithic studies, food storage
and food storage strategies would need to be investigated
[1]. NeoCOOP already supports investigating scenarios with

varying food efficiency but, effort would need to be made
to include cooperative food stocks whereby households may
choose to donate some of their food to a group storage which
any member of said group could access at any time.
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NeoCOOP
Property Value Reference

Model Parameters
Iterations 10 000

map height 100
map width 100

offset x 0
offset y 0

max height 1400m
min height 0m

cell dimensions 100m This makes the area of a single cell = 1ha
Global Environment System

Priority 10
min resources [0.0, 0.6] [1]
max resources [0.4, 1.0] [1]

interpolator range 10000 Note: Must be equal to the number of iterations.
resource interpolator cosine Set the frequency f equal to the environmental stress frequency.

Agent Resource Acquisition System
Priority 8

farmers per patch 1 Set to 1 because max occupants set to 1
max acquisition distance 50

storage yrs N/A Not used in this study
Agent IE Adaptation System

Priority 7
influence rate 0.1 Parameter Tuned
influence type AVG

persist belief space true
frequency 15 Parameter Tuned

Agent Resource Transfer System
Priority 6

load decay 0.0

Agent Resource Consumption System
Priority 5

storage efficiency 1.0 No resource decay.
Agent Population System

Priority 4
birth rate 0.15%
death rate 0.10%

yrs per move 5 iterations . [2]
init settlements 10

cell capacity 100
Agents

number 100
age of maturity N/A

consumption rate 0.5 [1]
child factor N/A Children eat less than adults, this takes that into account.

init occupants 1 Occupancy dynamics not investigated in the work.
init age range N/A
vision square 10000 So agents can see whole map.

move lookback 3
load difference 0.6 [2]

learning rate range [0.15, 0.7] Parameter Tuned
conformity range [0.15, 0.7] Parameter Tuned

mutation rate 0.1 Parameter Tuned
b 1.5 [2]
m 0.005 [2]

TABLE I: A comprehensive list of NeoCOOPs model properties.



(a) (b) (c)

Fig. 3: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the PA
(a), PS (b) and PF (c) scenarios.

(a) (b) (c)

Fig. 4: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 1A (a),
1S (b) and 1F (c) scenarios.

(a) (b) (c)

Fig. 5: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 2A (a),
2S (b) and 2F (c) scenarios.



(a) (b) (c)

Fig. 6: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 4A (a),
4S (b) and 4F (c) scenarios.

(a) (b) (c)

Fig. 7: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 8A (a),
8S (b) and 8F (c) scenarios.

(a) (b) (c)

Fig. 8: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 16A
(a), 16S (b) and 16F (c) scenarios.



(a) (b) (c)

Fig. 9: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 32A
(a), 32S (b) and 32F (c) scenarios.

(a) (b) (c)

Fig. 10: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 64A
(a), 64S (b) and 64F (c) scenarios.

(a) (b) (c)

Fig. 11: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 128A
(a), 128S (b) and 128F (c) scenarios.



(a) (b) (c)

Fig. 12: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the NA
(a), NS (b) and NF (c) scenarios.

(a) (b)

(c) (d)

Fig. 13: The average value of the peer and subordinate transfer agent properties over the course of a simulation for the 24F
(a), 40F (b), 48F (c) and 56F (d) scenarios.



(a) (b) (c)

Fig. 14: The average final difference of the peer and subordinate transfer agent properties (peer - sub) for all A (a), S (b) and
F (c) initialized agents across all stress scenarios investigated.

(a) (b) (c)

Fig. 15: The average value of the attachment agent property over the course of a simulation for all A (a), S (b) and F (c)
initialized stress scenarios.
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