Chapter 3

The Model

In this chapter we describe both the general aspects of the model that are
common to all experimental treatments and what differentiates each optimisation
strategy and regulatory framework.

The experimental design presents an overview of all different experimental
treatments used to investigate the consequences of implementing the Basel III
regulatory framework. The visualisation of all treatments, the description of their
main characteristics and distinguishable features facilitate the understanding of
the entire simulation and the relation between all its components.

The description of the model market structure identifies the constitutive parts
of the model and how agents interact within the model framework. This model
permits to understand whether the capital adequacy regulation represents a
source of increased risk or an adequate response to mitigate risk and the con-
sequences of future financial crisis. The potential homogenisation of banks’ be-
haviour and subsequent increase in dediversification effects, market instability
and increased risk is investigated using an ABM adapted from existing models
in the literature (Chiarella and Iori [2002] and Chiarella et al. [2009]). This ap-
proach consists of modelling financial markets as a population of agents identified
by their decision rules, which can be considered as a mapping from agents’ infor-
mation set to the set of possible actions: buy, sell or hold. Lastly, we identify the
parameters settings for each treatment of the model and describe the rationale
behind their choice.

In the next sections we describe the structural elements of the model, which

50



3. THE MODEL

are common to both agents’ optimisation strategies covered in chapters 5 and 6.
In section 3.1 we present the experimental design of our model. In section 3.2
we identify the market structure over which our model evolves and describe the
algorithms of all different treatments. In section 3.3 we present the parameters

settings for all treatments. Lastly, in section 3.4 we conclude.

3.1 Experimental Design

In order to test our hypothesis and answer to the research questions of whether
the capital requirements regulation reduces individual banks’ riskiness and conse-
quently market instability, or if inadvertently increases banks’ portfolio dediver-
sification and contagion effects, our experiments are analysed using two general
experimental treatments: with and without financial regulation. The treatment
without regulation represents the control group and its results are used to juxta-
pose to the results of our treatment groups and, thus, conclude if the introduction
of regulation has a positive or negative impact on bank’s behaviour. In order to
test the effects of portfolio optimisation strategies the experimental design is
divided in two distinct optimisation strategies: Modern Portfolio Theory and
Cumulative Prospect Theory.

Different experimental treatments, or sub-treatments, are considered and each
implements different risk metrics, or combinations of risk metrics. In experimental
treatments where agents cannot leverage nor short-sell we only implement VaR
and ES. When leverage is introduced we investigate the combined impact of the
leverage ratio, VaR and ES on banks’ behaviour, and in experimental treatments
with short-selling we add the liquidity coverage ratio to VaR and ES to conclude
about the impact of this regulatory feature. In the experimental treatment where
both leverage and short-selling are considered, then the joint impact of LR and
LCR is investigated along with VaR and ES.

Figure 3.1 shows how we administer these treatments on a group of agents to
observe their response to the introduction of a regulatory framework, or, alterna-
tively, to changes to this framework.

The distinction between treatments with and without regulation is defined

by the red and blue boxes, respectively. The existence of financial regulation is
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3. THE MODEL

determined by the implementation of minimum risk-based capital requirements,
as the regulation on leverage and liquidity are subsequent stages of the regulatory
framework and implemented as an extension of risk-based capital requirements
regulation. According to BCBS [2011] the leverage ratio and the liquidity cov-
erage ratio represent a complementary aspect of the minimum risk-based capital
requirements regulation.

In the case of absence of minimum capital requirements, and consequently
of financial regulation, the treatments within the blue box represent the control
groups of our experiments (nodes 1 to 4). The results obtained in these cases are
then compared to the results obtained from the experimental treatments, where
financial regulation is implemented (nodes 5 to 18). This comparative analysis
allows us to confront the impact of experimental treatments, with and without
financial regulation, on banks’ behaviour.

The first experimental treatment identifies the existence, or absence, of risk-
based minimum capital requirements, which determines the implementation, or
absence, of regulation. If financial regulation exists, then agents have to adapt
their behaviour to a mandatory minimum risk-based capital requirement by ap-
plying VaR or ES as a market risk metric. If leverage is permitted then agents can
leverage their positions and should keep a minimum leverage ratio if leverage reg-
ulation is implemented. If short-selling is allowed then agents can have negative
quantities of stock and should adapt their behaviour according to a mandatory
minimum liquidity ratio, if liquidity regulation exists.

The comparison of the results obtained from these different experimental
treatments allows to investigate the hypothesis of whether Basel III framework
and capital requirements regulation lead to portfolio dediversification and subse-
quent destabilisation of financial markets or, alternatively, if the financial markets
exhibit greater resilience. Our model identifies these known or expected sources
of variability in agents’ behaviour, but to reduce the effect of other sources of
variability in the comparison of results, e.g. initial conditions, which could affect
the accuracy of our answers to the research questions, we implement a model
where comparable treatments share the same initial conditions and free param-
eters remain constant. This procedure guarantees that the initial conditions are

identical, which eliminates the effect of these potential sources of variability, and
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3. THE MODEL

consequently allows to derive more robust comparisons between treatments.

3.2 Model Market Structure

We use an ABM of a financial market in which heterogeneous agents can invest
in both risky and risk-free assets (e.g. Brock and Hommes [1998], Chiarella and
Tori [2002], Chiarella et al. [2009], Hermsen [2010], Thurner [2012]). We use
an agent-based model with risk-free and risky assets to investigate the impact
of the regulatory framework on both banks’ portfolio management and market
behaviour. If agents only consider their demand for shares in isolation, in a single-
asset model, without modelling the agents’ wider portfolio optimisation problem
and risk management strategy, the model wouldn’t be suitable for exploring the
implications of Basel III since agents wouldn’t balance their capital against risk-
weighted assets.

The ABM here presented consists of a population of agents, in our case finan-
cial institutions, n,, trading in an order-driven market with continuous clearing,
over a period of time corresponding to two years, with no official market maker, in
which orders are submitted in a double auction and executions follow price/time
priority.

We restrict our world to one in which financial institutions construct a port-
folio consisting of two assets: a risky asset, stocks, and a risk-free asset, cash.
Therefore, we use equity positions as a proxy for market risk factors. Financial
institutions are considered to be risk sensitive which makes them rebalance their
portfolio every time they place an order in the market. All financial institutions
have heterogeneous expectations about the expected returns and transaction costs
and taxes are assumed to be zero.

Financial institutions can post two types of orders: buy or sell. Every time
a financial institution ¢ is chosen to enter the market this financial institution ¢
can submit a limit order, an order to trade a certain quantity of stocks at a given
price. These orders are submitted sequentially to an electronic trading system,
matched and executed automatically. This is known as the limit-order book,
where the lowest price for which there is an outstanding limit sell order, which is

called the ask price, matches the highest buy price, which is called the bid price.
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3. THE MODEL

If agents submit an order before their previous order gets executed, the latest
order works as a cancellation order and overrides the previous one.

In our model agents can place orders of size larger than one which allow us to
explore the implications of regulatory proposals, such as Basel III, for portfolio
dediversification and market instability.

Each financial institution receives an initial endowment of cash, ¢, and an

initial quantity of stocks, sf. All agents know the fundamental price, pf , which
follows a geometric Brownian motion (GBM), as in Chiarella et al. [2009]:
% = ult 4 oeVAt (3.1)
where AS is the change in the stock price S in a small time interval At and €
has a standard normal distribution. The parameter p is the drift and o is the
volatility of the fundamental price.

The price at time ¢, p;, is determined by the market and is given by the price
at which transactions occur. If no transactions occur at a given moment in time
then the price is determined by the last transaction price. If no bids or asks are
listed in the book then a proxy of the price is given by the previous traded or
quoted price. The risk-free rate, 7, is assumed to be constant over time and the
same for all agents.

Despite the fact that we investigate the potential occurrence of defaults, in
our model there is no actual default, which means that agents stay in the market
even if they cannot participate due to technical default, i.e. when they fail to: 1)
fulfil an obligation to repay a loan in case of leverage, or 2) buy-back the stock
at some point in the future in case of short-selling. In a situation of technical
default agents stay in the market, even if they cannot temporarily participate,
as a potential increase in stocks prices can generate positive changes in agents’
balance sheet and put agents actively back into the market. This possible scenario
shows the importance of oscillations in the balance sheet, even in the absence of
trading, and the endogenous risk (Shin [2010], Beale et al. [2011], Zhou [2013]).
In our model there is no lending/borrowing between financial institutions, which
means that any systemic effect we might see in the model cannot be attributed to

financial networks or interconnections. Instead, spillover effects operate through
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financial institutions behaviours and impact on market prices, rather than direct

exposure between them.

3.2.1 Financial Institutions’ Expectations

Economic agents form expectations and act on the basis of predictions gener-
ated by these expectations (Arthur et al. [1997]). Agents’ intrinsic strategies are
partially modelled based on their expectations of future prices and consist of three
components: fundamentalist, chartist and noise-induced. Financial institution ¢
time horizon, 7, depends on its components. Long term investors typically give
more weight to fundamentalist strategies with longer time horizons, whilst day
traders give more weight to chartist rules. Hence, the time horizon is a function of
the probability of each agent entering the market, A\?, and determines the interval
(t + 7(\")) while the agent’s expectation about the return will prevail.

Every time an agent 7 is chosen to enter the market, this financial institution
i forms an expectation in time ¢ about the return in time ¢ +7(X°), 7}, ). Fi-
nancial institutions make their expectations about returns based on the following

equation:

f
Thirroniy) = 91 log(p—i) + 95T i +1n'e (3.2)

where ¢¢, g5 and n' represent the weights given to fundamentalist, chartist and
noise-induced components, respectively. The sign of g} indicates a trend chasing
strategy if g5 > 0 and a contrarian if g5 < 0. All financial institutions use a linear
combination of these components.

The fundamentalist component is assumed to have a stabilising effect on
prices, whereas the chartist component has the opposite effect and tends to have
a destabilising effect generating large price jumps and driving asset prices away
from the intrinsic value of the asset. The average return over the interval used

by the chartist component is given by

Lt
_ 1 Di—j
Ty,Li = E E IOg . (33)

= Pt—ji—1
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L% is uniformly and independently distributed across financial institutions over
the interval (1, Lyaz)-

The noise component is randomly assigned across financial institutions, € ~
N(0,1).

The price expected at ¢ + 7(\") by financial institution 7 is given by

ﬁi,t-ﬁ-r()\i) = Pte?z’”f“i) (3.4)

3.2.2 Model Constraints

Financial institutions” wealth is constituted by cash and stocks and all finan-
cial institutions are given an initial endowment of cash and stocks. Thus the

wealth expression for financial institution ¢ at time ¢ is represented by:

W) =c + st xp (3.5)

where ¢! represents the amount of cash, s! the quantity of stocks and p; the
current price. If equation 3.5 is negative then agent ¢ is in technical default.
Financial institutions’ behaviour can be restricted by two types of constraints:
a budget constraint and/or regulatory constraints, depending on the treatment.
In the next sections we identify these two types of constraints and how they affect

financial institutions’ behaviour.

3.2.2.1 Budget Constraint

What determines the optimal demand for assets in investors’ portfolios de-
pends on how the maximisation problem is set up, as described in sections 2.2.2.1,
2.2.3.1, 5.1 and 6.1, subject to the investor’s constraints. When leverage is not
allowed, which is represented by a maximum leverage of 1, all agents’ trading
is limited by a budget constraint. However, when leverage or short-selling are
permitted, agents can choose an optimal proportion of the risky asset above 1 or
below 0, respectively. In the next section we explain how this budget constraint

influences agents’ trading behaviour.
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3. THE MODEL

3.2.2.1.1 Portfolio Selection without Regulation

Once the financial institution has formed its own expectations of the future
price and solved the problem of the optimal share of the risky asset, the financial
institution enters the market by placing a buy or a sell order subject to a budget
constraint, or holds trade, which means that the bank does not place an order.
If the optimal quantity of stocks is greater (lower) than the current amount of

stocks, then the financial institution is willing to buy (sell) at the following price:

i

buy: b; = @Jr‘r(/\i) - (ﬁiJrT()\i))H (36)

sell: af; = ]/5‘;;_,’_7_()\1') + (@_FT(M))HZ (37)

where x' is randomly assigned across agents using a negative exponential distri-
bution.

The optimal quantity of stocks is represented by

LW, i
q = . X Yy (3.8)

Dt
where y!~ is the optimal share of stocks. This optimal quantity is calculated
before any order is posted or any transaction occurs, either buy or sell. In each

case, the optimal quantity for buy and sell is, respectively, qiyt and qzvt:

Ay = b_lt X Yy (3.9)
t
% Wl i*
qz,t = it X Yy (3.10)

t

However, the order is placed if and only if the following conditions are met:
Baseline treatment without leverage nor short-selling
The required variables to place an order in the baseline treatment without

leverage nor short-selling are the following: the optimal quantity of stocks, ¢i*,

the current funds, ¢!, and the current amount of stocks, s!. Funds and stocks
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should be non-negative as there is no leverage nor short-selling. The algorithm

ensures that a decision regarding ¢! should be taken as the output.

Algorithm 1 Baseline portfolio optimisation trading algorithm
Require: ¢* Aci >0As >0
Ensure: ¢
if ¢/ > si then
buy: ¢, - min(g,, — s},7;); price < b
else if ¢} < s! then
sell: g,  s; — q¢\,; price « aj
else
hold
end if

For agents to place a buy order the optimal quantity of stocks should be

greater than the current amount of stocks as follows:

@ > s (3.11)

In experiments without leverage, agents’ optimal share of stocks is subject to

the following budget constraint:
=21 (3.12)
The volume of the buy order is a function of these conditions:
Qb = Min(gy — sp,7)- (3.13)
If the optimal amount of stocks is smaller than the current amount of stocks

@y < s (3.14)

then the financial institution 4 is willing to sell at price a! the following quantity

of stocks:
ot = 51 — oy (3.15)

As there is no short-selling in this treatment, equation 3.8 is never negative and
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the amount of stocks the agent is willing to sell is the difference between the
current and the optimal amount of stocks. Therefore, from equations 3.14 and
3.15, the volume of the sell order is always non-negative. Lastly, under any other
conditions the financial institution holds trade.

The trading conditions in the baseline treatment are shown in algorithm 1.
Baseline treatment with leverage

In the baseline treatment with leverage, the final quantity of stocks is not
subject to a liquidity constraint (v. equation 3.12). The maximum proportion
that the risky asset, y/*, can assume in equation 3.8 is 60 (BoE [2012]). The choice
of 60 as a ceiling for leverage is explained in more detail in section 3.3. The final
volume of the buy order is a function of the equation 3.11 and represented as

follows:
quev,t = qgtt - Si (316)

Hence, in this treatment the required variables are the optimal quantity of
stocks and a non-negative current amount of stocks. The selling conditions are
exactly the same as in the simpler baseline scenario (v. equation 3.15), therefore

the volume of the sell order is represented by:

qg,Lev,t = Qé,t = Si - qgjt (317>

Otherwise, the financial institution holds trade. Algorithm 2 summarises the

trading conditions for the baseline treatment with leverage.
Baseline treatment with short-selling

The liquidity constraint in equation 3.12 is implemented in treatments with-
out leverage, as agents cannot borrow cash to invest in risky assets. Hence, in
treatments where only short-selling is allowed this liquidity constraint imposes a
threshold on agents’ portfolio decisions.

In treatments with short-selling but no leverage, for agents to place a buy

order the optimal quantity of stocks should be greater than the current amount
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Algorithm 2 Baseline portfolio optimisation trading algorithm with leverage
Require: ¢j,,, A s; >0
Ensure: qj.,;

if ¢}.,, > si then

buy: qu)Lev,t — qlL*ev,t - Sf‘:; pI‘iCe «— bé
else if ¢j,,, < s then

sell: quev,t = Si - qgev,t; price — (Ii
else

hold
end if

of stocks, as in the baseline scenario (v. equation 3.13):

QZZ;SS,t = qg,t = min(f}?:t - Siv 7;) (3.18)

If the optimal amount of stocks is smaller than the current amount of stocks
then the financial institution 4 is willing to sell at price a¢ the following quantity

of stocks:
qZSS,t = Si - q;,t (3.19)

Contrarily to previous treatments, with short-selling qf:t can be negative and,
consequently, the final amount of stocks can also be negative. Lastly, under any
other conditions the financial institution holds trade. Algorithm 3 summarises

the above conditions.

Algorithm 3 Baseline portfolio optimisation trading algorithm with short-selling
Require: g4g, Acj >0
Ensure: ¢,

if ¢4, > si then

buy: gyss, + min(gss, — s, 7;); price < b
else if g4g, < s, then

sell: gigs, ¢ 5} — G55 Price < aj
else

hold
end if

Baseline treatment with leverage and short-selling
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In treatments with leverage and short-selling, agents can borrow cash and the
amount of stocks in agents’ portfolio can be negative. Hence, the required con-
straints of previous treatments are not present in this case. The amount of stocks

placed in the order-book is the following to buy and sell orders, respectively:

qli;LevSS,t = le:t - SIZ; (320)
and
q(izLevSS,t = Si - qg:t (3.21)

The buying conditions replicate the treatment with leverage and the selling
conditions replicate the treatment with short-selling. Lastly, under any other
conditions the financial institution holds trade. Algorithm 4 summarises the

above conditions.

Algorithm 4 Baseline portfolio optimisation trading algorithm with leverage
and short-selling

Require: qgevSS,t
Ensure: q’LevSS’t

if qgevSS,t > Sé then

buy: Q{Z)LevSS’,t — qgevSS,t - S%ﬂ pI‘iCG — bzlﬁ

else if ¢j, g5, < si then

sell: quLevSS,t A Si - qgevSS,t; pI'iCe < (Ii
else

hold
end if

3.2.2.2 Regulatory Constraints

In addition to leverage and short-selling constraints we implement regulatory
constraints (v. section 2.1.5.3). These regulatory constraints restrict the limits
of agents’ behaviour and allow us to evaluate the impact of capital requirements

on portfolio dediversification and market stability. These regulatory constraints
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can assume the form of risk-based capital requirements, leverage ratio and lig-
uidity coverage ratio. The regulatory constraints are implemented as regulatory
layers. Hence, LR and LCR are implemented in addition to VaR and ES regu-
latory constraints, as additional and more stringent regulatory layers. These are

summarised in turn below.

3.2.2.2.1 Value-at-Risk

In our simulation the previous day VaR number is estimated using histori-
cal simulation. Data are collected on movements in the artificial stock market
which provides N alternative scenarios for what can happen between today and
tomorrow, where N is the considered number of completed days at the moment
of the VaR estimation. For each scenario, the change in the value of the portfolio
between today and tomorrow is calculated. This defines a probability distribu-
tion for daily losses (gains are considered negative losses) in the value of agents’
portfolio. The value of the portfolio under i scenario is calculated as follows
(Hull [2012]):

3.22
o (3.22)

where v; is the value of the risky assets on day i, and today is represented as day
n.

Scenario ¢ assumes that the percentage changes between today and tomorrow
are the same as they were between day ¢ — 1 and ¢ for 1 < ¢ < 252 in case of VaR,
or 1 <1¢ <504 for ES.

The losses for all the scenarios are then ranked in descending order and the
one-day 99 percent VaR can be estimated as the n'*-worst loss over a maximum
of 252 days for VaR or 504 days for ES. The 10-day VaR is then calculated as
V10 times the one-day 99 percent VaR:

10-day VaR! = 1-day VaR! x v/10 (3.23)

The sVaR is calculated daily and calibrated to the existent historical data at

the time of the calculation. Hence, sVaR is calculated based on the n'*-worst loss
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observed since the beginning of the simulation, i.e. over a maximum of 504 days
or the available data at that moment in time. The results of the calculations of
VaR and sVaR are scaled up, respectively, by the multiplication factors mét or
m},. We use the conventional 252 days period (when existent) in the case of VaR
and all the available data at the moment of the calculation in the case of sVaR
and ES to capture all the periods of significant financial stress.

We implement a backtesting daily assessment on actual, not hypothetical,
changes in the portfolio’s value based on a comparison between the portfolio’s
end-of-day value and its actual value at the end of the subsequent day excluding

fees, commissions, and net interest income (BCBS [2006], Rossignolo et al. [2013]):

(P,— P x S,) (3.24)

The boundaries of the backtesting results are deduced by calculating the bino-
mial probabilities of obtaining a particular number of exceptions from a sample of
252 independent observations, associated with an accurate model with true level
of coverage of 99 percent. Under these assumptions, we calculate the probability
of obtaining exactly a certain number of exceptions in a sample of 252 indepen-
dent observations. When there are no 252 observations available, the backtesting
results calculate the binomial probability of obtaining a certain number of excep-
tions from a sample of the number of days in the simulation at that moment in
time.

Over a trading day institutional agents compare their previous end of day
value-at-risk (VaR!_ ;) with their current cash position. If the capital require-
ments constraints are violated then institutional investors must sell the necessary
amount of their risky stock during the trading day in order to meet the minimum
capital requirements.

Institutional agents place orders if and only if the following conditions are met:
VaR treatments

Under regulatory constraints, the previous liquidity constraint (v. equation

3.12) becomes also a function of the minimum capital requirements constraint:
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. ct — K
Wary = — 2t > 1 (3.25)
) b?i
For this equation to be greater than 1 the following condition is necessary, al-

though not sufficient:

i i
kVaR,t <G

If the optimal portfolio optimisation determines a buy order, qéj‘t > st there-

fore the volume of the buy order with VaR constraint is the following:

qivaR,t = min(t]i} - Si, 7€/aR,t) (3.26)

However, if the portfolio optimisation without capital requirements determines
that ¢¢ < s!, than the buying condition under VaR constraint is ignored and
substituted by a sell order as in equation 3.15. Otherwise, agents’ hold trade.

If the minimum capital requirements are greater than the current amount of

funds or if the optimal amount of stocks is smaller than the current amount of

stocks,
k:%,aR,t > cl (3.27)
or
qf:t < s! (3.28)

then the financial institution ¢ places a sell order. However, this order is placed
differently depending on whether equation 3.27 or equation 3.28 are verified.
The regulatory condition in equation 3.27 is given priority over the portfolio
optimisation condition in equation 3.28, as the financial institution has to fulfil
the regulatory own funds requirement (v. equation 2.1) at the end of each day.
Hence, a market order, an order to immediately buy or sell a certain quantity
of stocks at the best available opposite quote, is placed to sell the necessary
quantity of the risky asset at the best available price in the limit-order book.
When a market order arrives it is matched with the best available price in the

limit order-book, and a trade occurs at price:
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sell: @y, = max(by) (3.29)

and the final quantity of stocks to sell is the following:

ki —c
Vet g (3.30)

i o .
anaR,t - mm( i
Avart

where ki, p, — ¢, must be greater than 0 to ensure that the selling threshold
defined by VaR conditions is not violated, and in treatments without short-selling
the current amount of stock, s, must be the maximum quantity of stocks that
agents can sell.

If equation 3.28 is verified but not 3.27, which reflects the portfolio opti-
misation condition without regulatory constraint, a limit order is placed in the
order-book, as in the selling conditions of the baseline treatment. In the case

where

i T A i
kVaR,t = NGyy < 5

then agents follow the portfolio optimisation and place a sell order. Under any
other conditions the financial institution holds trade. Algorithm 5 summarises
the conditions described above.

We conclude that from the implementation of risk-based capital requirements
regulation, agents’ portfolio maximisation is constrained by the introduction of
k{ar, either in selling or buying orders.

The capital requirements algorithms with leverage and short-selling have to
be extended to reflect the required variables from algorithms 2 and 3, respectively
and, consequently, the treatment with leverage and short-selling from algorithm
4. Thus, in algorithms 6, 7 and 8, the required variables from capital require-
ments, ¢! — ki > 0, and the required variables from leverage and short-selling
treatments are combined to form the condition of the algorithms for the respec-
tive treatments.

In the treatment with VaR and leverage, ci > 0 is not required as agents can
leverage their positions. Similarly, in the treatment with short-selling si > 0 is not

required as negative stocks positions are allowed. These two conditions are then
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Algorithm 5 Portfolio optimisation trading algorithm with VaR
Require: ¢z, Aci > 0Asi>0NE—k >0
Ensure: ¢z,
if k! < ¢! then
if ¢; < q;, then
buy: QéVaR,t'<_ min(é]i} — 51, Yary); Price < bt
else if ¢; < ¢, , then
sell: Gy - 5% — g1 price  af
else
hold
end if
else if k; > ¢! then

. kit —ct . .
- Al : VaRt —t Y. ] 2
sell: qoyaps < mm(m, st); price < @y,

else if k{ = ci A gl < si then

sell: qly gy < St — ¢.y; price < aj
else

hold
end if

jointly implemented in the treatment with VaR with leverage and short-selling.
Hence, in trading algorithms with regulatory capital requirements, agents’ op-

timal portfolio maximisation, derived from their portfolio maximization function,

is constrained by the minimum capital requirement calculated at the end of each

day.
3.2.2.2.2 Expected Shortfall

According to the stressed metric for minimum capital requirements recom-
mended by the BCBS (v. equation 2.2), in our model ES is calibrated to all
observed data, until the maximum of a two years period, which consequently
captures the most severe stress periods.

The one-day 97.5 percent ES is estimated as the average of the n-worst losses
(v. equation 3.22), and the 10-day ES is then calculated as 4/10 times the one-day
97.5 percent ES:
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Algorithm 6 Portfolio optimisation trading algorithm with VaR and leverage

e i Y
Require: QVaRLev,t ANs;>0Nc;—Fk; >0
. YA
Ensure. 4VaRLevit
if £} < ¢} then
P i
if qLev,t — quev,t then
buy: DVaRLevt mln(Qb,t — St 'VVaR,t)a price < b;
else if ¢} ., ; < ¢ /., then
sell: QaVaRLevt < St — Qa4 Drice < a;

else

hold
end if

else if k} > c; then
. ki —ct . .
. . 7 4 VaRt "t Y. 3 )
sell: Ghvarrevs < mln(—a‘jv - , S}); price < aVaR.s
aR,

else if ki = ci A gl < si then

sell: ¢y, RLevt < sp — qfl,t; price <— ay
else

hold
end if

Algorithm 7 Portfolio optimisation trading algorithm with VaR and short-
selling

Require: q%/aRSS,t Nep—k;p >0
. 1
Ensure: qy,pgs;
if k} < ¢} then
if g554 < Ghss, then
DUY: Ghyamssy ¢ Mg, — i Yan,); price < b
else if ¢5q, < ¢, gq, then
sell: @lyapssy < 5 — diy; price « af
else
hold
end if
else if k} > c; then
%/qR,tic%

. k .
. (2 . 1 (A
sell: QavaRrSs;t € gt > PTICE <= Ay ,py

CTT | WVaRe
else if k} = c; AN q; < s; then
sell: qu@Rss,t 5= q(i;t? price < a;
else
hold
end if
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Algorithm 8 Portfolio optimisation trading algorithm with VaR, leverage and
short-selling

Require: q%;aRLevSS,t Ney—ki >0
Ensure: ¢i,preossy
if k; < ¢} then
if Cﬁ:evsw < QpLevss, then A o _
buy: q{l)VaRLevSS,t '% mln(qzjt - S%’ |/Y%/aR,t|); pI’iCG A b;
else if q,55 < darevss, then A
sell: quvarrevsss < St — QZttQ price <— aj
else
hold
end if
else if &k} > ¢! then
sell: qéVaRLevSS,t A %7 price A ai/aR,t
else if ki = ci A gl < si then
sell: quvarLevsst < St — Qf;:ﬁ price < a;
else
hold

end if

10-day ES! = 1-day ES! x v/10 (3.31)

We use a discrete version of the ES as suggested by the Basel Committee
(BCBS [2013]) and we will not focus our attention on the discussion whether ES
is an appropriate risk measure or if a continuous version of the ES is preferential
to the discrete one (e.g. Acerbi and Tasche [2002], Acerbi and Szekely [2014],
Chen [2014]). Our only goal is to investigate the impact of Basel regulation and,
therefore, we implement the Basel Committee’s recommendations.

All the conditions described above for VaR equally apply for treatments with
ES. The only difference between VaR and ES is the implementation of the more
stringent calculations of the daily minimum capital requirement when using ES.
Therefore, all the equations and tables described above will be referenced for ES

treatments when needed, as the trading algorithm is exactly the same.
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3.2.2.2.3 Leverage Ratio

In our model, the capital measure consists of cash and we calculate the ex-
posure measure using on-balance sheet exposures (stocks) and SFTs exposures
(short-selling). As previously mentioned in section 2.1.5.3.1.3, the Basel Commit-
tee considers SFTs an important source of leverage and since short-selling is the
sale of a borrowed security, the short-seller will have to buy the borrowed security
back from the market in order to return it to the lender. Short-sellers can borrow
securities in the repo or securities lending markets. Hence, even if the buy-back
is not imposed in our model, we consider short-selling as a source of leverage.
The buy-back is not mandatory as we do not build a network of borrowers and
lenders, our agents buy and sell following their optimisation strategies regardless
of whom their trading partners are. In the case of short-selling, an agent’s strategy
of shorting a position is matched by another agent’s long strategy. We can inter-
pret a potential continuous short-selling position as a succession of short-selling
contracts with many different trading partners willing to enter this contract based
on their optimisation strategies, and not necessarily an unrealistically extended
short-selling contract beyond the settlement period.

The only mandatory buy-back, and consequently cancellation of the short
position, is verified when the agent’s optimisation strategy so determines, or
when the regulatory treatment imposes a certain level for the LCR. When the
calculation of the LR is smaller than the regulatory threshold of 3.25 percent,
agents have to adopt measures to bring the ratio back above the threshold, which
implies selling risky assets.

If in our model we had forced agents to buy-back (in treatments with short-
selling) or pay-back (in treatments with leverage) it would have reduced the
impact and significance of implementing both the LR and LCR regulatory frame-
work. Therefore, agents don’t payback nor buy-back, rather wait for their opti-
misation function or regulation to correct their positions.

The application of some rules is necessary to guarantee the correct implemen-
tation of capital requirements regulations. Hence, any regulation always overrides
the result of the optimisation function of the agents, and both VaR and ES always

override the result from LR and LCR regulations, as these are only supplementary
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regulatory measures.

The quarterly LR is updated at the end of each day and based on the average
of the daily LR of the last 63 business days. The decision of buying or selling
stocks depends on the calculation of the final amount of stocks, ¢jp,, which in
turn, simultaneously, depends on and is used to calculate the quarterly LR, and
LR, the future leverage ratio. Both these variables are a function of each other,
directly or indirectly. The amount of stocks is constrained by the LR threshold
of 3.25 percent, and the future leverage ratio depends on future funds and stocks,
which are a function of the volume of the current order. This nonlinear problem
involves complicated relations between the variables and this complex optimisa-
tion problem is solved by using DEPSO (Zhang and Xie [2003]). DEPSO is an
algorithm for numerical optimisation problems and combines the advantages of
Differential Evolution (DE) and Particle Swarm Optimization (PSO). Due to the
randomisation used by DEPSO it becomes very likely to find the global optimum
instead of getting trapped in local extrema. This non-linear optimisation method
guarantees, ceteris paribus, that the future leverage ratio (LRj, ;) is minimised
but remains above the threshold of 3.25 percent after the transaction completed
while, simultaneously, maximises the portfolio optimisation function of the agent
(¢iry)- If the amount of risky assets is greater (smaller) than the amount of
current stocks, than the agent should buy (sell), otherwise the agent should hold
trading.

DEPSO numerical optimisation problem may be written as follows:

minf(z)

(3.32)
subject to g;(x) =€ [¢;,d;] fori=1,...,n

where f(z) is the objective function, each g(x) is a constraint function to be
satisfied, and ¢ and d are constants. Each function can be nonlinear and non-
smooth. In the unconstrained optimisation problem ¢ = 0 and, consequently,
there is no constraint. Table 3.1 shows DEPSO setting parameters.

Algorithm 9 describes how DEPSO minimises LR;,, and calculates ¢j p ,, and
how agents place orders based on these variables.

After implementing the risk-based capital requirements and the LR regula-

tions, there is a smaller probability of placing an order directly derived from the
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Algorithm 9 Portfolio optimisation trading algorithm with LR

Require: ¢}y, + [0,100000] A s} > 0 Aci — kj >0
Ensure: min(LR; ) > 3.25% A qu,t
begin DEPSO:
if qiR,t > st then
CZ+1 « Cé_ — QLR X by _
€41 S St X P+ g X b
else if ¢y, < s; then
Ciy1 <t darry X Ot ‘
€iy1 < Sp X pp — C_IZLR,t X aj
else
i i
Cip1 < ¢
€iy1 < 5L X Pt
end if
LRj, +
if efH < 0 then
L‘I:z%+l = ;71,1
end if
output: LR} ; A CIER,t
end DEPSO

i

Ci41
7

et

if ¢}, > si then
i i
dLR.t  9VaRLev,t
else if ¢j p, < s; then
if decision < buy then
sell: g7 g, < min(s; — q,1 g St); price < maz(bt)
else if decision < ¢}/, prev: then
QarLRr.t < 5t ~ daLR.t _ _ _ _
sell: qorp, mm(max(qluLR,tvqZVuRLev,t)v s;); price < max(b;)
else if decision < ¢’ ., ; then
QaLrt < 5t — aLRt . .
sell: g1 g, < min(s; — q,1r 4 St); price < maz(bt)
else if decision + hold then
sell: qurp < min(s; — Qarr e 5t)
else
hold
end if
else if ¢} p, = s; then
if decision < ¢} ., then
sell: qZLR’t — min(si — qflLR,t, s%); price « al
else if decision < ¢}/, pre,+ then
sell: Qarrt ¢ 9avaRLev.t; Price < mazx(by)
else
hold
end if
end if
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Table 3.1: DEPSO setting parameters

Description Value
Number of agents 70
Maximum learning cycles 200
Constraint-handling Basic constraint-handling
DE: scale constant 0.5
DE: crossover constant 0.9
PSO: learning factor for pbest 1.494
PSO: learning factor for gbest 1.494
PSO: inertia weight 0.729

Note: Zhang and Xie [2003]

original risk management optimisation strategy, as both regulatory constraints

can override the agents’ portfolio optimisation decision.

3.2.2.2.4 Liquidity Coverage Ratio

In our model, cash is considered HQLA and short-selling and leveraged posi-
tions are considered future cash outflows due to interbank lending, even if these
exposures are not explicitly represented in the model in the form of a network
of dependencies. Naked short-selling happens when investors sell securities that
they do not possess and have not confirmed their ability to possess in the fu-
ture. This practice is possible in our model and we consider it temporary or
unintentional rather than market manipulation.

Under the regulatory framework agents have to buy the necessary risky assets
to maintain the LCR ratio above the threshold of 100 percent. Only if the LCR
is below this threshold agents have to implement algorithm 10, otherwise the
amount calculated under risk-based capital treatments regulation or portfolio

optimisation is used to place an order.

3.2.2.2.5 Leverage Ratio and Liquidity Coverage Ratio

The realistic scenario is the existence of both leverage and short-selling. There-

fore in this section we present the cases were the LR and LCR regulations are
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Algorithm 10 Portfolio optimisation trading algorithm with LCR

Require: qiLCR,t < [s%,100000] A ¢t — ki >0
Ensure: min(LCR;y1)" > 100% A ¢fop
begin DEPSO:
if qZLCR,t > s} @hen‘ ‘
hglai,y < ¢ = Ghrore X 08
710014.1_ s x pe + Grers % bl
else if ¢} - p, < st then
hqla%_i_l <— C% + q;LCR‘,t X ai )
neoy Ly < [8y X Pt — daror X G
else
hqlai | < ¢
neoy,, + |sj X py
end if _
; hqlal
LCR}, | + Lo

s
'I’LLOt+1

if ncoj,, < 0 then
LCRj, hqlgfﬂ

end if

output: LOR{ | A qiory

end DEPSO

if qZCR’t < sivthen
dLoRt < dVaRss,t
else if ¢} -, > s; then
if decision < buy then
buy: Girops < 15t = drorsl = Grors < MiGror o Bvarss,); Price < b
else if decision < (sell V hold) then
if decision < sell then
if k} < ¢} then
buy: giror < 5 = drerd = Grore < Mi(Gror o Gvarss,); Price < b
else if k; > ¢} then
sell: ¢, cRr ¢ < Govarss,; Prices— maz(b;)
end if
else if ¢i,,pgq, < hold then
if & <1V Sk <1 then
t t
hold
else ;
, o . i ,
buy: gyrop, < min(|s; = gyror s i ); prices by
end if
end if
end if
else if ¢jcp, = s; then

if decision < ¢’ ¢, then
sell: ¢ rops < 8t — Qhss,; brice < aj
else if decision < ¢}y/,rgs; then
sell: darcRrt < Qavarss.: Price < maz(b})
else
hold
end if
end if
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applicable and the respective algorithm.
Table 3.2 shows the cases where leverage and liquidity are considered and in-

vestigated in our model and, consequently, when the LR and LCR are applicable.

Table 3.2: Leverage and Liquidity

Cash Position Stock Position Applicable Regulation Applied Regulation

+ + LR LR
+ - LR and LCR LCR
- + LR and LCR LR
- - LR and LCR N/A

Note: Negative cash positions represent borrowing and negative stock positions
represent short-selling. When both positions are negative, or when total wealth
is negative, it is assumed that agents are in technical default.

When both amounts of cash and stocks are negative agents are considered to
be in technical default, which disallow them to actively participate in the market
until at least one of these components become positive and greater than the other
(negative) component. If one of the positions, cash or stocks, is positive it might
still be the case of technical default if the negative position is greater than the
positive one, which results in a negative wealth position (v. equation 3.5) and
subsequently technical default.

If both cash and stocks are positive there is no case to apply the LCR, as
short-selling is only relevant for liquidity purposes, which is not applicable in this
case. However, regulation on leverage ratios is implemented under this scenario
as stocks are agents’ exposure.

In the scenario where only leverage is present, the cash position is negative
and the stocks position is positive, both LR and LCR are negatively affected.
Hence, both LR and LCR are applicable. However, implementing the LR trading
algorithm, which brings the LR above the threshold of 3.25 percent, simultane-
ously eliminates the violation of the LCR since both cash and stocks become
positive. Interbank lending maturity is irrelevant in our model, as we are only
interested in the analysis of the LR and its position above 3.25 percent. Hence,

the network of dependencies between agents becomes irrelevant. For example,
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if an agent maintains a leveraged position for long periods of time, it doesn’t
necessarily reflect an unrealistic long interbank lending maturity. It might be the
case of an agent continuously borrowing from different lenders.

Lastly, in the case where the amount of cash is positive and the amount of
stocks is negative, both LR and LCR are applicable due to short-selling. As in the
previous case, despite this scenario being covered by both regulatory frameworks,
the implementation of just one of them simultaneously solves the other violation.
In this case the application of the LCR also eliminates the LR violation. Short-
selling is assumed to be less than 30 days maturity, therefore all short-selling
positions are considered in terms of LCR calculation. The amount of cash is
never negative in this scenario, as that particular case is captured and solved
under the LR regulation.

The algorithm 11 reflects the treatment where the LR and LCR are applied.
If both ratios are above the minimum required threshold this algorithm is not
applicable. However, if either the minimum required threshold for LR or LCR, or
both, are violated then the respective algorithm is called and used by the agents
to maximise their positions under these constraints.

The agents’ risk management strategies are influenced by the introduction of
different regulatory frameworks, which are applied in our model as a sequence
of regulatory layers that limit the agents’ trading behaviour. We can briefly
summarise the general trading rules as follows: 1) Any regulatory constraint
overrides the agents’ initial portfolio maximisation decision, and 2) the risk-based
capital requirement constraints, VaR and ES, override the leverage and liquidity
ratios. For example, if the initial portfolio optimisation defines as optimal trading
direction buying a certain amount of stocks, which is then overridden by the risk-
based capital requirements constraint, VaR or ES, determining that the agent
should sell rather than buy, even if the LCR is above the minimum required
threshold and indicates buying as optimal, the capital requirements constraint
prevails over the other two strategies and the agent places a sell order in the

order-book.
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Algorithm 11 Portfolio optimisation trading algorithm with LR and LCR
Require: ¢}, < [s},100000] A gt 5 , < [0,100000] A ci — ki > 0
Ensure: min(LCR: ;) > 100% A min(LRi11)" > 3.25% A qiLRLCR,t
if LR >0.0325 A LOR > 1 then
9LRLCR, < q%/aRLe_vSS,L
else if LR < 0.0325 A s; > 0 then
LRLCR},, < LR},
if qiRLCR > si then

7 X2
9LRLOR,t ¢~ %VaRLevSS,t
L ¥ 1
elste if 9LRLOR: < St then
if decision < buy then
buy: ¢y rror ¢ 15t - qiRLOR,t“ price < maxz(bt)
else if decision < sell A k} > ¢} then
sell: ¢qrrrcR < ma?(qaLRLcR,tvanaRLeuss,z)v price - maz(bt)
else if decision < sell A ki < ¢} then
se}l: q;L'R'LCR’t |8}, @b riC Rt |5 Price < max(be)
else if decision < hold then
se.ll: daLRLCR,t < 156 GrrLCR,l; Price < maz(bt)
end if
P _ i
else if dLRLCR,t = St then .
if decision < sell A k; < c; then
sell: ¢4 prcr: € St ~ 9aLevss,s PrICe —ay
else if decision < sell A ki > ¢} then
SE}L 9arRrLCR.t € aVaRLevss,:s Price < maz(be)
end if
end if
else if LCR < 1A s; <0 then
if qiRLC.R_,t > s; then
if decision < buy then
buy: dyLRLCR,t |si — qLRLC’R,tl = Qy,LRLCR,t mm(quRLCR,t’ qbVaRLevSS,t)7 price < b}
else if decision <« sell V hold then
if decision < sell A kj < ¢ then
buy-‘ GrrLOR: < 1St — dLrLoRrtl = Grrror: ¢ ™G LRLOR . GV aRLevss,t); Price
«— b}
else if decision < sell A k} > ¢} then
sell: 441 rpoRt <~ dayaRLevss,: Price < maz(by)
else if decision < hold then
buy: @1 rror: < I8t — dLrLoR,: s Price < b
else if 9LrLCR,: < St then

i i
41, RLCR,t € 9VaRLevSS,t
se i _ o
else if ¢} prop, = 5% then ‘
if decision <— sell A ky < c; then
sell: ¢urrrcoR,e < daLevss,ts PTiCe € ay
else if decision < sell A k; > c; then
sell: 441 rroRt € YavaRLevss,: Price <= max(b)
else
hold
end if
end if
end if
end if
else

i i
9LRLOR,t ¢ 9VaRLevSS,t
end if
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3.3 Parameters Settings

In this section we describe in detail all the parameters settings for all treat-
ments. The results reported per treatment are the outcome of 100 simulations
of 504 business days each, equivalent to a period of 2 years, with different seed
values for the pseudo-random number generator. We allow for a transitory regime
and discard the first 10 days (each simulation runs over 514 days) in order for
the model to reach a stable behaviour after the usual initial instability. The
model stabilises relatively quickly, thus the 10-days margin is sufficient for our
data and consequent analysis not to be affected in case of any exceptional slower
stabilisation process. Each day consists of 510 equally-spaced discrete time steps,
representing 1 minute intervals over a period of 8.5 hours of a continuous trad-
ing session, for example on the main order-book of the London Stock Exchange,
which represents 257040 time-steps per simulation. We repeat the simulations
within each treatment varying the initial conditions to test the robustness of the
results to sensitivity.

Table 3.3 summarises the initial conditions and dependent variables of the
model common to all experimental treatment conditions. Table 3.4 shows the
initial conditions that differ from M-V treatments to CPT treatments. The initial
conditions and dependent variables exclusively used in treatments with VaR and
ES are identified separately in table 3.5. Tables 3.6 and 3.7 summarise the initial
conditions of the experiments with LR and LCR, respectively.

3.3.1 Parameters

At the end of each day, financial institutions earn interest equal to the risk-
free rate, ry. The overnight risk-free rate was calculated based on the Bank of
England annual average of the sterling overnight index average (SONIA) lending
rate between the years 2001-2017, 4.47 percent, and using the following day count

convention:

Number of days between dates

x Interest in reference period 3.33
Number of days in reference period P ( )

The probability of arrival at the market, \?, is a function of the weight of the
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Table 3.3: Initial conditions and distributions for dependent-variables for all treat-
ments

Simulation
Runs 100
Days 504
Length of days 510
Market
Yearly risk-free rate: r; 4.47%
Arrival rate: \*

1 — proportion of fundamentalist component
Initial price: po ~U (400, 900)
Fundamental Price: ptf

GBM drift: p 2.07 x 1077
GBM volatility: o 3.97 x 1074
GBM Wiener process: € ~N(0,1)
Population
Population size: n, ~U (500, 5000)
Maximum chartist horizon:L,, 4 85
Chartist window interval size 30
Proportion of institutional agents 50%
Power Law Exponent: x' ~ Ezp(10)
Initial cash: ¢ ~U (50000, 100000)
Initial stock: s} ~U (50, 200)
Time horizon: 77 (A
Agents’ components weights
Fundamentalist: g} ~N(0,01)
Chartist: g ~N(0,02)
Noise: n' ~N(0, ng)
o1 ~U(0.1,1.0)
o ~U(0.1,1.4)
ng ~U(0.001,0.009)

Table 3.4: Initial conditions and distributions for dependent-variables that differ
between M-V and CPT

Population M-V

Risk aversion: A | ~N(3,05)
Population CPT
Loss aversion: A’ ~U(1.5,3)

Risk aversion - gains: of | ~U(0.875,0.905)
Risk aversion - losses: 8¢ | ~U(0.905,0.935)
Exponent for gains: ~° ~U(0.28,1)
Exponent for losses: 4° ~U(0.28,1)
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Table 3.5: Initial conditions and distributions for dependent-variables for risk-
based capital requirements treatment

Market
if (Far.ssFiss) > ci then 0.025
Arrival rate: Ay g 4, Agpsy stherwise M
Regulation
VaR horizon 252 days
sVaR horizon 504 days
Average VaR horizon 60 days
VaR confidence interval 99%
ES confidence interval 97.5%
Minimum holding period 10 days
Multiplication Factors: m., ms [3,4]
Backtesting
VaR backtesting horizon 252 days
sVaR backtesting horizon 504 days
Confidence interval 99%
Green zone [0,0.95]
Yellow zone [0.95,0.9999]
Red zone [0.9999, 1]

Table 3.6: Initial conditions and distributions for dependent-variables for leverage
ratio treatment

Market
if LR > 3.25% then X\

Arrival rate: A
Lt otherwise 0.025

Regulation
Maximum leverage

LR

60
> 3.25%

Table 3.7: Initial conditions and distributions for dependent-variables for liquidity
coverage ratio treatment

Market
if LCR > 100% then \*

Arrival rate: Ao,

otherwise 0.025

Regulation

Maximum short-selling

—60

LCR

> 100%
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fundamentalist component of each agent. These parameters are initially randomly
assigned across agents. The greater (lower) this weight the smaller (bigger) is the
probability of that agent entrying the market, as chartist and noise trading is
characterised by intraday activity contrary to longer periods of inactivity of fun-
damentalist traders. The agents’ components weights, g}, g5 and n’ (v. equation
3.2), are randomly assigned across agents at the beginning of each simulation.

Chiarella and Iori [2002] define the mean of the weight of the fundamental-
ist, chartist and noise components as 0 and set the standard deviation as 1, 1.4
and 3, respectively. We opt not to set these parameters selectively. Histori-
cal stock prices daily volatility in the United Kingdom is, on average, approxi-
mately 1 percent?. Hence, in order to choose approximate values to those set by
Chiarella and Iori [2002] and, simultaneously, obtain a daily volatility of approx-
imately 1 percent, we set these parameters to o1~U (0.1, 1.0), 0o~U (0.1, 1.4) and
no~U(0.001,0.009). We choose the parameters set in Chiarella and Iori [2002]
as the maximum of the uniform distribution for the fundamentalist and chartist
components, and we defined the interval for the weight of the noise component
to obtain an average annual volatility of approximately 16 percent®.

The parameters of the distribution of the initial price are set taking into
consideration the parameters of the initial amounts of cash and stocks. The
initial amounts of cash and stocks are chosen with the objective of setting initial
proportions of cash and stocks in agents’ portfolio representing approximately 50
percent of the agents’ total wealth. This setting permits analysing the evolution
of portfolio dediversification from a relatively balanced initial position rather
than from portfolios with initial conditions biased towards more cash or more
risky asset, which could influence agents’ portfolio diversification. Therefore, we
define ¢{~U (50000, 100000) and s)~U(50,200) as distributions for initial cash
and stocks, respectively. Given these intervals, the setting of the initial price

should not be either too low, to avoid too many orders placed with a similar

4World Bank, Volatility of Stock Price Index for United Kingdom [DDSM01GBA066NWDB],
retrieved from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/
series/DDSMO1GBAO66NWDB, March 14, 2018.

5This value is just indicative. The average annual volatility in our model varies depending
on the experimental treatment. For example, the average annual volatility in the experimental
treatment with LR and LCR is 95.07 percent and 65.79 percent for VaR and ES treatments,
respectively. However it is very small to all baseline treatments.
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price, which would eliminate most of the volatility in the market, or too high,
since it would reduce the number of transactions and respective volume, also
affecting the behaviour of the order-book. Therefore, the initial price was set as
po~U (400, 900).

In theory, the fundamental price of a stock is determined by the present
value of expected future earnings that accrue to shareholders. Hence, we use
a historical sample of stock market real earnings data® from January 1871 to
September 2017, to define the trajectory of the fundamental price in time. This
data set consists of monthly data that was converted to tick data to allow the
calculation of the fundamental price per tick, or time step. In our model, the
fundamental price follows a GBM (v. equation 3.1) and the parameters p and
o are set by using, respectively, the mean and standard deviation of the growth
rate of the real earnings defined as follows:

GRE, = ]%E;%E—f?t‘l (3.34)
where RFE; represents the real earnings at time t. Real earnings at time ¢ — ¢ are
defined as

RE, ;= Et‘C’;—IthDIt (3.35)
where F,;_; represents the earnings at time ¢ — ¢, and C'PI is the Consumer Price
Index. We opt for earnings rather than dividends as firms may decide not to
pay dividends and instead repurchase shares as a way of returning earnings to
shareholders (Campbell and Shiller [1988]). Hence, we use a valuation model
(Fama and French [2002] and Boswijk et al. [2007]) based on past observation of
earnings to define the trajectory of fundamental prices.

The population size follows a uniform distribution with a sufficiently large
interval to allow for heterogeneous population sizes. Other authors, for example
Chiarella and Iori [2002], Chiarella et al. [2009] and Hermsen [2010], opted for a
fixed number of agents, from 500 to 5000 agents. As in other parameters of the

model, we rule out a discretionary approach and instead draw a range of values

6Shiller, R., Online data U.S. Stock Markets 1871-Present, retrieved from Yale University,
Department of Economics; http://www.econ.yale.edu/ shiller/data.htm, March 15, 2018.
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from a uniform distribution with interval [500, 5000] to test model sensitivity and
robustness to initial conditions.

The maximum horizon, Li,q,, of the chartist rule, 7, ;i (v. equation 3.3), is set
to a weekly window with a maximum of 85 periods, each of which consists of 30
time steps. Thus, the chartist rule determines a maximum horizon corresponding
to 2550 time steps, the equivalent to one trading week in our model. The rationale
behind the implementation of chartist windows over a maximum of a trading week
as the basis for the chartist rule derives, firstly, from the fact that the influence of
technical analysis on traders is particularly relevant at the shortest horizons, e.g.
intraday to one week (Taylor and Allen [1992]), and, secondly, from the concept of
refresh time sampling (Barndorff-Nielsen et al. [2011]). Non-synchronous trading
delivers fresh prices at irregularly spaced times. The chartist windows are used
by financial institutions in our model to look back at past prices and use them
to derive price statistics subsequently used in the chartist rule of the expected
returns (v. equation 3.3) and in the mean-variance portfolio optimisation. If the
observation of past prices reveals only, or mostly, stale prices, as it can be the
case if there are no transactions updating the current price, under these conditions
the chartist rule would not be of any use for the financial institution since the
difference between successive prices would be 0.

The percentage of institutional agents in the model assumes particular im-
portance as it may play an important role in stock market liquidity (Blume and
Keim [2012]). Institutional agents are the only ones affected by the regulatory
constraint and high percentages of this type of agent may lead to an order-book
depletion on its buy side due to the necessity of fulfilling the minimum capital
requirements by selling risky assets. Hence, it becomes extremely important to
use a proportion of institutional agents taken from the empirical evidence in the
stock markets to avoid biased results due to unrealistic orders and subsequently
an unbalanced order-book. The proportion of equities managed by institutional
investors started to increase during the second half of the 20t" century, reaching
67 percent of the value of all stocks by the end of 2010 in the US (Blume and Keim
[2012]). In 2007, the private institutional owners owned 44 percent of the value
of the London Stock Exchange (of Trade Industry and Fisheries [2014]). Hence,

the bottom line to our approach is that institutional investors own or manage a
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large share of the equity market. The institutional ownership in our simulation
is 50 percent, which is represented by a proportion of 50 percent of institutional
agents. Notwithstanding the share of institutional agents in the market is not
necessarily equivalent to the share of stocks traded, we can reasonably assume
that the share of the institutional agents’ stocks value is not far from 50 percent
due to, firstly, the uniform statistical distribution determining the assignment of
the initial endowment of stock, and, secondly, to the binomial distribution used
to assign an institutional type to agents.

The power law exponents x' (v. equations 3.6 and 3.7) are randomly assigned
across financial institutions using a negative exponential distribution with a rate
parameter of 10. This power-law behaviour of the limit prices makes traders
place their orders relatively far away from the best price, as pointed out in Zovko
and Farmer [2002] and Bouchaud et al. [2002] based on empirical data. Despite
the fact that roughly half of the total number of orders exhibit a small differ-
ence between the limit price and the best price, in some cases the distribution of
limit orders prices could be 50 percent above or below the stock price (Bouchaud
et al. [2002]). Financial institutions believe that very large variations of the price
are possible within a short time horizon. These beliefs might be explained, for
example, by traders’ over-optimistic expectations about the executions of orders
far from the current price or mistakes made by traders while forming expecta-
tions. It is important to stress the fact that, both in real markets (Zovko and
Farmer [2002]) and in our model, an increase in the average difference between
the limit price and the best price available will lower the limit-order book depth.
Although, Zovko and Farmer [2002] conclude that volatility influences the dis-
tance between the limit price and the best price, at least partially. These authors
also suggest that traders probably use volatility as a signal when placing orders,
which supports the credible hypothesis that traders are reasonably aware of the
volatility distribution when placing orders. In our simulation, financial institu-
tions incorporate historical volatility in the optimal proportion of the risky asset
in the mean-variance optimisation strategy (v. chapter 5), and in the limit of the
integral of the value function of the CPT-agents (v. chapter 6).

In a model where orders are formed using the expected price, which depends on

the expected return (v. equation 3.4), rather than the bid/ask prices, the power

84



3. THE MODEL

law exponents with mean of 0.1 help keeping orders close to the best prices. If
the exponent introduces more diffusion, this effect would increase the uncertainty
of errors originated from the expected future price. Hence, the exponential dis-
tribution with rate parameter 10 stabilises the price around the bid/ask while
simultaneously allows orders far from the best prices to occasionally emerge.

Typical risk aversion coefficients, A?, for the representative investor range
from 2.0 through 4.0 (Friend and Blume [1975]), with the latter representing less
tolerance to risk. In our model, financial institutions are assigned an initial level
of risk aversion using a normal distribution with mean 3 and variance 0.5.

Agents’ time horizon, 7!, is represented as a function of the probability of
arrival at the market (¢ +7(\%)). Only when an agent enters the market an order
can be placed in the order-book.

Table 3.4 shows the parameters exclusively used in CPT simulations. The
CPT wvalue function curve is concave above the reference point and convex below
if both a and 8 (v. equation 2.15), parameters of risk aversion, are less than
1. Empirical analysis suggests that J is greater than « and that both parame-
ters need to be close to each other to generate investment proportions in risky
and risk-free asset close to those observed in some markets (Davies and Satchell
[2004]). Abdellaoui [2000] calculates median estimates of @ and £ of 0.89 and
0.92, respectively, assuming a piecewise power utility function as in Tversky and
Kahneman [1992]. These estimates are close to Tversky and Kahneman [1992]
estimates of 0.88 for both a and (3, and are consistent with the hypothesis of
diminishing sensitivity, as « and [ capture diminish sensitivity to increases in
absolute payoffs (0 < «, 8 < 1). The impact of a change in the absolute payoff
decreases with the distance from 0 (Tversky and Kahneman [1992]). According
to Tversky and Kahneman [1992], the median of the loss aversion (\) was 2.25,
which is in the center of the interval of the uniform distribution used in our model
to calculated M.

Our model is based on the original piecewise power utility function (Tversky
and Kahneman [1992]). However, it has been noted that this specific form of the
value function violates loss aversion (Kobberling and Wakker [2005], De Giorgi
et al. [2011]), unless @ = 5 and A > 1. These authors suggest a piecewise CARA

value function based on exponential utilities. However, He and Zhou [2011] note
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that this solution does not avoid potential problems.

Loss aversion is violated for small deviations from the reference point when
a < f (Bernard and Ghossoub [2010]). In our implementation o < 5 and A > 1,
so our model might violate loss aversion for small deviations from the reference
point, according to Bernard and Ghossoub [2010]. The interval on which loss
aversion is violated depends on the distance between o and 8. In our model «
and [ are very close, hence the interval is infinitesimal (Bernard and Ghossoub
[2010)):

1
O<z<e= \abp

Nevertheless, Baucells and Heukamp [2006] show empirical evidence support-
ing violations of loss aversion when individuals use the probability of strictly
positive gains as a heuristic, in particular with small stakes. Therefore, there
is some empirical evidence supporting the hypothesis a < 3, which also has the
benefit to allow the use of a closed-form solution for the calculation of the optimal
holding of the risky asset, as we will see in section 6.1.

Parameters v and 0 describe the amount of over- and underweighting in the
weighting functions. Assuming the parameters of the weighting functions, v and
d (v. equation 2.16), are greater than 0.28 ensures that both functions, for gains
and losses, are increasing (Barberis and Huang [2008]). These authors consider
~ and ¢ in the interval 0.28 < «,9 < 1. The curvature of the weighting functions
reflects the overweighting of small probabilities and the underweighting of high
probabilities, both for positive and negative prospects, and further enhance the
risk aversion for gains and risk seeking for losses. Tversky and Kahneman [1992]
estimate the median values for v and ¢ as 0.61 and 0.69, respectively. Abdellaoui
[2000] and Abdellaoui et al. [2007] estimate approximate values, v = 0.6 and
9 = 0.7, and Wu and Gonzalez [1996] estimate § = 0.71. Hence, the distributions
of the parameters in our model follow the empirical evidence.

The initial conditions in tables 3.5-3.7 emanate from the regulations and were
previously covered in section 2.1.5.3, except the arrival rate and the maximum
levels of leverage and short-selling. If the regulatory constraints are not applica-

ble, then the agents’ arrival rate is the same as in the baseline treatments and
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only depends on the parameter \. However, when at least one of the financial
regulations constraints is verified, then institutional agents are recurrently called
to enter the market and the rate of arrival is 2.5 percent. This process guaran-
tees that all institutional agents violating at least one of the financial regulations
constraints are called and the probability of entering the market is 2.5 percent.
This probability is small enough to avoid flooding the market with mandatory
and simultaneous institutional agents’ selling market orders. For example, when
institutional agents violate the VaR condition at the end of day ¢, in day ¢t + 1
they will be recurrently called to enter the market in every time step, thus for a
maximum of 510 times during the day, until their position is within the threshold
imposed by the regulations. The probability of entering the market is no longer
the share of their fundamentalist component but a small and constant probability
of 2.5 percent to avoid all institutional agents currently violating the VaR condi-
tion entering the market in the same moment and with that flooding the market
with their short positions. These conditions allow institutional agents to correct
their positions and fulfil the regulatory requirements during the next business
day and, simultaneously, avoid the artificial instability that would be created by
a disproportionate number of selling order placed simultaneously.

The maximum level of leverage and short-selling of 60 was determined based
on the maximum level of leverage UK banks exhibit before the crisis of 2007-
2008 (BoE [2012]). The leverage reached its peak during the crisis and UK
banks maximum leverage observed was above 60 times capital. UK banks median
average between 1960-2011 has been 20-30 times capital (BoE [2012]), therefore
we choose a relatively high level of leverage to capture extreme behaviours similar
to the ones observed during the financial crisis of 2007-2008. The level of short-

selling replicates the maximum level of leverage but with negative sign.

3.4 Conclusion

Our hypothesis and research questions are tested using an ABM which ex-
perimental design is divided in treatments with and without leverage and short-
selling, EUT and CPT, and Basel III regulation. This model allows the identifi-

cation of potential impacts on banks’ behaviour and market stability of different
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market conditions and optimisation strategies and the implementation of financial
regulations.

The market structure and economic agents’ behaviour are suitable for inves-
tigating the implications of the financial regulations and most of the parameters
settings in the model were derived from empirical evidence.

This chapter covered the general features of the model. The agents’ strategy-
specific features, which are distinguishable between optimisation strategies, are
covered in the respective chapters 5 and 6.

Lastly, we make all the code available upon request.
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