Conceptualizing and implementing an agent-based modeling framework to examine the hurricane

evacuation dynamics. Authors: Austin Harris, Dr. Paul Roebber, Dr. Rebecca Morss.
1. Introduction

The 3-10-day forecasts for Hurricane Irma (2017) called for landfall as a major hurricane near Miami, likely
spurring the largest evacuation in US history (FDEM 2017). However, the forecasts then shifted westward,
with eventual landfall near Tampa Bay—St. Petersburg, a common evacuation destination in the event, while
leaving Miami largely unscathed (Cangialosi et al. 2018; Wong et al. 2018). Similarly, uncertainties in
Hurricane Rita’s (2005) track and intensity forecasts, combined with the aftermath of Hurricane Katrina, led
to mass evacuations and severe traffic jams in Houston—Galveston. The worst of the storm missed the
area, but had Rita struck Houston—Galveston directly, the consequences could have been severe, as many

evacuees were stranded on area roads (Zhang et al. 2007; Knabb et al. 2006).

The events are relevant since the forecasts were fairly accurate, with the westward shift of Irma’s track
falling within the National Hurricane Center’'s (NHC) cone of uncertainty (Cangialosi et al. 2018), and Rita’s
forecast track being less erroneous than most (Knabb et al. 2006). However, forecasts were less successful
in providing useful guidance for many affected by the events, and they demonstrate how evacuations — the
primary means of protective action from hurricanes — are a complex process involving many physical-social
parts and uncertainties that evolve over time (e.g., Morss et al. 2017; Barton 2014; Trainor et al. 2012;
Miller and Page 2007). Because of these complex dynamics, preventing loss of life remains a formidable

challenge.

Empirical studies provide key insight to different aspects of hurricane evacuations, such as how evacuation
decisions are made (e.g., Huang et al. 2016; Lindell and Perry 2012; Baker 1991). However, it’s difficult to
empirically study the full evacuation system, in all of its complexity, across multiple cases. Thus,
computational models provide a complementary tool where empirical knowledge can be codified and used
to run virtual experiments for a variety of hurricane scenarios, real and imagined (e.g., Morss et al. 2017,
Watts et al. 2019). Along those lines, recent coupled-model experiments demonstrate the potential to model
the complete hurricane evacuation system in one framework (e.g., Watts et al. 2019; Blanton et al. 2018;
Fossell et al. 2017). Theoretically, the framework — particularly one involving agent-based simulations
(Barton 2014; Miller and Page 2007) — could examine the hurricane evacuation system dynamics

holistically, which has not yet been done.

This article details a new agent-based modeling platform for investigating the complex dynamics of the
integrated hurricane evacuation system. Specifically, empirically-informed models are built representing
three interwoven elements relevant to hurricane evacuations: the natural hazard (hurricane, forecasts,
warning information), the human system (information flow, evacuation-related decisions), and the built

environment (infrastructure, evacuation traffic). NHC products represent the hurricane, forecasts, and
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warning information. Two agent-based models replicate the flow of information, evacuee decision-making,
and evacuation infrastructure, routing, and traffic. By integrating the models into a unified, agent-based
framework, we create a virtual laboratory uniquely positioned to advance fundamental knowledge of the

system’s behavior (Figure 1).

The philosophy guiding the model's development is to represent key aspects of real-world hurricane
evacuations established in the literature, while remaining sufficiently idealized to explore system dynamics
and build fundamental knowledge (e.g., see Watts et al. 2019; Sun et al. 2016). The model is implemented
for and validated against data from two past hurricane affecting the Florida peninsula, Hurricane Irma (2017)
and Hurricane Dorian (2019). However, the model can be extended to a variety of hurricane scenarios, real

or imagined, and additional regions or landscapes beyond the one described herein.

One core feature of the model involves representing dynamic and uncertain forecast information about the
hurricane as it moves across the virtual landscape. Heterogeneous household agents combine the warning
information with knowledge of the built environment to generate complex evacuation decisions. Another
core feature involves vehicle agents fleeing across an idealized road network and interacting to produce
evacuation traffic. Each of these features combine to produce complex evacuation phenomena which are

impossible to detect using empirical methods.

Previous modeling studies of the hurricane evacuation system are fragmented, meaning they sufficiently
represent some features while ignoring and oversimplifying others. For example, one body of work uses
agent-based modeling to study evacuation planning for hurricanes (e.g., Madireddy et al. 2011; Zhang et
al 2009; Chen 2008, 2012; Zhan and Chen 2008; Chen and Zhan 2004, 2006). Such work focuses primarily
on the evacuation traffic while oversimplifying the forecasts, warning information, and evacuation decision-
making. Another body of work uses agent-based models to study warning information flow and evacuation
decision making (see, e.g., Dixon et al. 2017; Yin et al. 2014; Widener et al. 2013; Watts et al. 2019; Morss
et al. 2017; Czajkowski 2011; Hasan et al. 2013). However, these studies do not represent the evacuation
traffic or the built environment. Arguably the most comprehensive model of the hurricane evacuation system
is Blanton et al. (2018) and Davidson et al. (2018), as they integrate the forecast, evacuation-decisions,
and evacuation traffic into one system. However, the evacuation models are non-agent-based, as they were

designed for operational use instead of knowledge-building and experimentation.

Building on previous work, here we describe the conceptualization and implementation of a new agent-
based modeling laboratory which integrates the natural hazard, the human system, and the built
environment together in a unified, agent-based framework. As such, the model is uniquely positioned to
examine the hurricane evacuation dynamics holistically. That is, to establish the relative importance of
factors, interactions between systems, and the broader emergent patterns. After describing the model
components, we present results from experiments illustrating how large-scale patterns of evacuation can

emerge from the individual decisions of many heterogeneous agents as they interact with each other, and
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with their physical and informational environments. For the model development and research shown here,
simulations are performed on a simplified representation of Florida — a place frequently visited by tropical
systems and with notable mass evacuations like Irma (Keim et al. 2007). The model was designed to be

flexible, however, and thus the modeling framework can be modified to study other regions and hurricanes.

The paper’s structure is similar to the Watts et al. (2019) publication in Environmental Modeling & Software.
Section 2 provides an overview of the new model and its key components (i.e., its conceptualization and
implementation). Section 3 describes the experimental design and the intended data analysis. Section 4
presents the results, including the spatial and temporal patterns in evacuation decisions and evacuation
traffic. It then investigates the sensitivity of the model’s behavior to changes in key parameter sets (e.g.,
the agents’ weighting of different types of information, the timing of evacuation orders, the geographic
distribution of the agent population, and use of contraflow to improve traffic) and compares results for two
different hurricanes, Irma (2017) and Dorian (2019). Section 5 summarizes key results, discusses

implications of this work, and proposes future research.
2. Conceptual model and implementation

This section describes the major model components and key design elements. The model code was created
using the Fortran programming language. This was preferred over existing agent-based software as it
provides full control over all model parameters and thus creates a virtual laboratory well suited to perform
experiments. For further details, the commented code, an ODD specification (a formal, detailed model
description), and supporting input files are available for download at the CoMSES model library

(Paul/Rebecca: | will look into this soon).

The model system includes a spatially explicit virtual world representing a geographical area of interest
(described in section 2.1); a dynamic hurricane — and forecast information about it — that passes through
that world (section 2.2); a multi-agent model where information is interpreted by millions of heterogenous
agents and used to make evacuation decisions (section 2.3); and a traffic model where agents evacuate
across the virtual world as the hurricane approaches (section 2.4). These components are conceptually
and numerically interconnected as shown in Figure 1. The simulations shown here use a 30 minute time
step for the evacuation decision-making model (Figure 1b), a 1.2 second time step for the traffic model

(Figure 1c), and run for 144 and 184 hours in the cases of Irma and Dorian, respectively.

To design and implement the model, we integrate expertise in agent-based modeling, social science, and
meteorology with knowledge and data from meteorology, emergency management, protective decision
making, risk communication, social vulnerabilities, and traffic modeling. As in any modeling effort, numerous
aspects of the model are simplified and some real-world processes are not represented. Decisions about
what to include in the model were based on our research questions (e.g., to explore the broad system

dynamics), review of relevant literature, and discussions among our research team. That said, elements of
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the model presented here could be modified (or expanded upon) to address research questions other than

the ones described here.

2.1. The virtual world

The virtual world is a cellular representation of a geographic area of interest. In this modeling framework,
that world represents the north-south axis of Florida (US) abstracted as a 10 x 4 geographical domain.
Florida is selected as it is an area highly susceptible to hurricanes, and has experienced notable mass
evacuations such as Irma (2017). The grid spacing is coarse by design (40 grid spaces) as the project’s
goal is to explore the broader system dynamics, and to provide a starting point for more complex
experiments. Census data informs the spatial distribution of agent households on the abstracted grid, while
social vulnerability information is used to prescribe household characteristics known to influence
evacuations (section 2.3). For the built infrastructure, virtual highways and interstates designed to mimic
Florida’s road network are overlaid on the model grid (section 2.4). Details regarding the construction of
each model system — the natural hazard, the human system, and the built environment (Figure 1) — is
provided in the next three subsections.

2.2.The natural system (hurricane, forecasts, and warning information)

The modeled world includes a hurricane that approaches the model domain. The storm and its forecasts
can be real or synthetic; here we simulate real, historical storms using archived NHC products (available at
https://www.nhc.noaa.gov/gis/). These products track the storm’s location, size and intensity via wind radii
at 34, 50, 64+ knot intervals, and forward speed as it progresses across the virtual world (Table 1a).
Forecast products used include the forecast track, storm category, current and forecast wind radii (34, 50,
64+ knot intervals), cone of uncertainty, and the arrival time of tropical storm force winds (Table 1b). The
current and forecast information update every 6-hours, and when taken together, the products capture the
critical forecast elements (e.g., storm’s track, intensity, size, forward speed, amount of uncertainty) and
their evolution with time. NHC products are preferred over ensembles (Blanton et al. 2018; Davidson et al.
2018) as they more closely resemble forecasts seen by the public (Demuth et al. 2012), and can be
manually perturbed to assess the evacuation’s sensitivities to the forecast (section 4.6). Note: the products
are a starting point, but the model can be extended to include additional forecast and warning information,
if desired. In this article, NHC forecast products are obtained for Hurricanes Irma (2017) and Dorian (2019),
which represent forecast scenarios with different tracks, speeds, forecast errors, and subsequently,

different evacuation behaviors (e.g., Wong et al. 2018, Mongold et al. 2020).

Products are synthesized into a “light system” forecast of the three major hazards known to drive
evacuation: wind, surge, and rain. The approach resembles the Meteoalarm web platform

(http://www.meteoalarm.eu) where hazard risk are displayed in traffic-light color-coding (green, yellow,

orange, red). Reds are reserved for severe and rare events, while also capturing some degree
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of immanency (i.e., reds are warnings, yellows are watches) (Alfieri et al. 2012). The light system is
advantageous as it (1) synthesizes the forecast for public consumption like TV personnel do (Demuth et al.
2009), and (2) provides means to connect forecast products with the agent-based model grid where

evacuation decisions are made (Figure 1b).

Light system forecasts are created in GIS by overlaying products onto the 10 x 4 agent-based model grid.
At each of the 40 grid cells, wind forecasts are made by combining the storm’s expected category, forecast
wind radii, the cone of uncertainty, and the expected time of arrival products for that location. The
mathematical process of combining the information is described in Table 2. The same inputs determine
surge forecasts, plus the storm’s approach angle and inundation susceptibility, which is estimated using
NHC'’s potential storm surge inundation products (Table 3). Rain forecasts are made using the storms
forward speed, wind radii (to approximate the size of the rain field), the cone of uncertainty, and the
expected time of arrival of tropical storm force winds (Table 4). For each hazard, inputs are weighted with
values informed by the literature (e.g., Rezapour and Baldock 2014), and team expertise in meteorology
and risk perception. Though the ideal weighting is unknown, sensitivity tests on the light system weighting
(not shown) suggest the weights do not change the forecasts (and subsequent evacuations) in any

meaningful way.

Figure 2 presents the light system forecasts for Hurricane Irma (2017) at 24 hour intervals. The early NHC
forecasts depict the most likely scenario as a landfalling major hurricane near Miami. However, the
forecasts and actual track eventually shifted westward as confidence increases, with a first landfall in the
Florida Keys and a second near Tampa Bay. The light system captures the gradual westward shift in
threats. Moreover, the threats increase with time as confidence grows, at least for areas inside the
narrowing cone of uncertainty. Because of these features, and because of the sensitivity tests on the system
weighting (not shown), the light system appears capable of representing the hurricane and hurricane
forecasts in the integrated modeling system. As a result, the model becomes the first to use synthesized
NHC products in an agent-based modeling framework, and alongside Watts et al. (2019) and Morss et al.
(2017), contains one of the most sophisticated representations of hurricane forecast information to date in

models of the hurricane evacuation system.

2.3. The human system (information flow, evacuation-related decisions)

With the synthesized light system forecasts as inputs, an agent-based model simulates the “human system”
i.e., information flow and evacuation-related decisions (Figure 1b). This includes two types of agents:
emergency management agents who issue evacuation orders, and household agents (i.e., the public) who
collect information, assess risks, and make protective decisions. An overview of the agents and their

decision-making algorithms is described below.
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As the hurricane approaches the coastline, emergency management agents (EMs) in the model decide
whether to issue evacuation orders for each grid cell. The decision-making process is as follows: EMs issue
evacuation orders when (1) the surge forecast is yellow-orange-red, and (2) when the estimated arrival time
of tropical storm force winds equals the grid cell’'s clearance times, which is the estimated time needed to
safely evacuate the area. This process is represented schematically in Figure 3 and is based on research
by Demuth et al. (2012), Dye et al. (2014), and Bostrom et al. (2016) as well as the analysis in Cutter (2019).
Clearance times are based on the Florida Statewide Regional Evacuation Study Program (2019) and are
influenced by the available road networks and the number expected to evacuate, which is determined by
population density and the surge forecasts. For example, the highest clearance times (40—60 hours) are
located in Miami and Tampa Bay during red surge forecasts; lower clearance times (5—20 hours) occur in
rural areas upstate with yellow surge forecasts. Since surge is not expected inland, only coastal counties
can issue evacuation orders. Future versions of the model could include more complex decision making

processes, including variations in how EMs make decisions and/or weight various pieces of information.

The second type of agent, household agents, represent groups of four individuals. These agents collect
information about the hurricane, assess risk posed by the storm, and decide whether the risk warrants
evacuation. The design of the evacuation decision-making algorithms prescribed to these agents was
adapted from conceptual models of protective decision-making for hazards, such as the Protective Action
Decision Model (PADM; Lindell and Perry, 2012; see hurricane applications in Lazo et al. 2015; Huang et
al. 2017; Watts et al. 2019), and findings from empirical research on decision-making for hurricanes (e.g.,
Baker, 1991; Dow and Cutter, 2002; Dash and Gladwin, 2007; Morss and Hayden, 2010; Bowser and Cutter
2015; Huang et al., 2016, Morss et al., 2016, Demuth et al., 2016; Cuite et al., 2017; Bostrom et al., 2018;
Demuth et al., 2018). As noted in Watts et al (2019), a major challenge is to synthesize the conceptual
PADM model and information from empirical analyses into simple yet sufficiently specific instructions for
agents. For the purposes of our model, we are not seeking a perfectly realistic algorithm; but one that
captures the main processes so we can examine the broader evacuation dynamics holistically. To do so,
we synthesized the relevant literature which suggests that people evacuate when they believe the hurricane
poses a risk, that different people perceive risk differently and have different evacuation barriers (e.g.,
Baker, 1991; Dash and Gladwin, 2007; Lazo et al., 2015), and that factors with the strongest influence on
evacuation decisions are forecast information, evacuation orders, and household characteristics such as
age, socioeconomic status, and car ownership. Thus, we construct the decision-making algorithms by
combining information obtained from these key sources (i.e.., forecast information, evacuation orders, age,
mobile home residence) into a risk assessment, which is then compared with evacuation barriers (i.e.,
socioeconomic barriers, car ownership) that vary across the agent population. Undecided agents seek
information and update decisions every 30 minutes, making agents active participants in the risk
communication process (Watts et al. 2019; Morss et al. 2017; Mileti and Sorensen 1990, Sadri et al. 2017).
The decision-making algorithm is depicted schematically in Figure 4; specific mathematical formulation is

provided in Table 5.
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Household agent characteristics are prescribed by subjectively translating county-level census and social
vulnerability data (Flanagan et al. 2011) regarding mobile home ownership, age, car ownership, and
socioeconomic status onto the model. Grid cells in the model are ranked between 1-5 (Figure 5), with
higher values representing variables which increase evacuation intentions (e.g., a 5 in mobile home
ownership indicates a grid cell has high rates of mobile homes, relative to other grid cells). Once the
geographical distribution of variables is sorted between cells, specific characteristics are stochastically
assigned to individual households (Table 6). Again, the idea is to not perfectly represent the real-world
characteristics, but to generally capture its geographical distribution, and to have a wide range of
characteristics within grid cells. This results in many heterogeneous agents — 4.1 million households total

(Figure 6) — with unique preferences and characteristics.

To account for complexities in how people process and value different information, factors influencing risk
perception and evacuation barriers are weighed differently between households (Figure 4; Table 7). For
example, some agents are concerned about evacuation orders while others are not; some are concerned
about their mobile home’s durability while others are not, and so on. Varying the weights captures this
effect. In addition, varying the weights indirectly represents other factors such as culture and worldviews,
which are sometimes important (Lazrus et al. 2020; Morss et al. 2020). In the model, weight distributions
are stochastically generated for each household with specified ranges informed by the literature (e.g.,
Senkbeil et al. 2019; Bostrom et al. 2018; Petrolia et al. 2011; Meyer et al. 2014; Morss and Hayden 2010;
Brommer and Senkbeil 2010; Peacock et al. 2005).

One noteworthy simplification of the decision-making algorithm is that households do not share forecast
information with other agents. Another is that they do not consider social cues, such as seeing other people
evacuate, which can increase one’s risk perception. Although these processes are known to influence
people’s risk assessments and behaviors (e.g., Dash and Gladwin, 2007; Lindell and Perry, 2012; Demuth
et al., 2018), we do not include them as the added detail further complicates the interpretation of results.
However, such features could be added in future model versions, depending on the intended research

goals.

2.4 The built environment (infrastructure, evacuation routing, and traffic)

Once evacuees decide to depart, a second idealized, agent-based model simulates the infrastructure,
evacuation routing, and traffic (Figure 1c¢). The model’s road network (Figure 6) consists of two northbound,
five-lane interstates (blue lines) — representing Florida’s I-75 and 1-95 — situated on the edges of the grid
i.e., along the “coasts.” Meanwhile eight, two-lane highways (red arrows) move inland residents onto the
outer interstates where they flee northward to safety (blue arrows). Additionally, two east-west running,
three-lane interstates (purple arrows) — representing Florida’s I-75 and |-4 — allow residents to move

horizontally across the grid (e.g., from Miami towards Tampa Bay, or inland towards Orlando). Though
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idealized, the built infrastructure should capture the main elements of Florida’s real world road network.

However, future ABMs could add complex road structures, if desired.

If a household decides to evacuate, evacuating agents are instructed to depart within twelve hours of the
evacuation decision (Huang et al. 2012, Lindell et al. 2005, Murray-Tuite 2019). Departure times are
generated stochastically. Evacuees are also assigned a destination where late and low income evacuees
move to local shelters. The rest seek accommodations where the forecast hazard risk is lower and where

accommodations are available (i.e., upstate, out-of-state, inland, and in metropolitian areas; Table 8).

Departing households are assigned a vehicle and look for available spots on the nearest highway (Figure
6; red/purple arrows). If spots are unavailable for a period of time due to traffic, evacuees lose patience,
abandon the evacuation and shelter in-place instead. For those who enter the road, rules governing vehicle
movement are simple: drivers accelerate when they can, slow down if they must, and do not accelerate at
the speed limit (70 mph on interstates, 50 mph on roads) or behind another car. Lane switching is not
permitted in this model for simplicity but could be added in future models. Some drivers exhibit erratic
behaviors by randomly braking, which can cause significant traffic jams. Accidents are stochastically
generated, with a frequency based on Robinson et al. (2009). In regard to route selection, we simplify the
complex process by assigning agents the shortest route to their destination (Sadri et al. 2014). Once

assigned, evacuee routes do not change. The default settings for the parameters is described in Table 8.

A segment of evacuation traffic generated by the agent-based model is shown in Figure 7. Congestion (blue
streaks) occurs from abrupt slowdowns by erratic drivers. Similar congestion (not shown) happens at
intersections, in densely populated regions, and by accidents or gas shortages. For example, in the
experiments shown in section 4.1, considerable traffic occurs along I-75 and 1-95 northbound due to the
Miami-Tampa Bay metropolitan areas being in the storm’s path. Similar traffic patterns were observed
during Irma’s actual evacuation (e.g., Zhu et al., 2020; Cava 2018). Because of the model realism — both
at micro-scales and in aggregate — we believe the agent-based model represents the traffic dynamics at a

sufficient resolution to achieve the proposed goals.
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i.e., the

The idealized,
coupled-model “virtual
system laboratory”

Figure 1: The conceptualized model system developed for the study, which includes three interconnected
systems of hurricane evacuations: (a) the natural hazard (b) the human system, and (c) the built
environment, represented by NHC forecast products and two agent-based models, respectively (italics).
Coupling the idealized models creates a virtual laboratory uniquely positioned to perform experiments which
are impossible to conduct in the real-world. For example, model components are perturbed in different ways
to see how elements interact in the system context. In this way, they advance our understanding of the
hurricane evacuation system dynamics.
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a) Current storm characteristics b) Forecast information

(updated every 6 hours) (updated every 6 hours)

Current wind radii (i.e., 64, 50, and 34 knot wind Forecast track
speeds in each of 4 quadrants)

Current maximum sustained winds (i.e., current Forecast maximum sustained winds (i.e., forecast
storm category) storm category)

Current forward speed Forecast wind radii (i.e., 64, 50, and 34 knot wind
speeds in each of 4 quadrants)

Cone of uncertainty

Expected arrival time of tropical storm force winds

Table 1: Archived NHC products used to depict the (a) current storm characteristics and (b) forecast
information in the model framework. Storm characteristics and forecast information update every 6 hours.
Consistent with the wind speeds in the NHC data, winds are discussed here in the unit knots (nautical miles
per hour, equivalent to approximately 1.15 mph or 1.85 km/h). When taken together, the products capture
the hurricane size and location and critical forecast elements (e.g., storm’s track, intensity, size, forward
speed, amount of wuncertainty, evolution with time). Information was downloaded from
https://www.nhc.noaa.gov/gis/.
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Wind *Forecast Forecast wind Location in cone of *Expected arrival
risk category field uncertainty time
<TS None Fully outside Outside cone
2 TS-1 >34 kts Partially outside >96 h
3 2-3 >50 kts Partially inside 48-96 h
4-5 >64 kts Fully inside <48 h
Weight 15% 50% 20% 15%

*Conditional upon being in the cone of uncertainty and/or within forecast wind radii (=1 otherwise)

Table 2: Wind risk forecasts are calculated for each grid cell by assigning a risk score (1-4) based on the
storm’s forecast category, forecast wind field (34, 50, 64+ knot intervals), location in the cone of uncertainty,
and forecast arrival time of tropical storm force winds. The scores are weighted, summed, and rounded to
the nearest integer to provide an overall wind threat score (1-4) expressed as green-yellow-orange-red,
respectively. Note: scores for the forecast category and expected arrival time are set to 1 if the grid cell is
not situated within the cone of uncertainty and/or any forecast wind radii. When taken together, the products

capture the wind’s critical forecast elements (e.g., storm’s track, intensity, size, forward speed, amount of
uncertainty, evolution with time).
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. *Location in
Surge | *Inundation | *Forecast Forecast *Approach *Expected
: : o ok cone of ek
risk potential category wind field angle . arrival time
uncertainty
1 None <TS None Outside cone Fully outside | Outside cone
2 Weak TS-1 >34 kis Left Partially 96 h
outside
3 Moderate 2.3 >50 kts Right and Partially 48-96 h
parallel inside
High 45 >64 kis Right and Fully inside <48h
perpendicular
Weight 12% 12% 25% 16% 20% 15%

*Conditional upon being along shoreline (i.e., =1 inland)
** Conditional upon being inside cone of uncertainty and/or within forecast wind radii (=0 otherwise)

Table 3: Surge risk forecasts are calculated by assigning a risk score (1-4) based on the cell’s inundation
potential (estimated using NHC’s potential storm surge inundation products), expected category at that
location, location within the forecast wind field (34, 50, 64+ knot intervals), the storm’s approach angle, the
location in the cone of uncertainty, and the expected arrival time of tropical storm force winds. The scores
are weighted, summed, and rounded to the nearest integer to provide an overall surge threat score (1-4)
expressed as green-yellow-orange-red, respectively. Note: scores for the expected category and expected
arrival time are set to 1 if the grid cell is not situated within the cone of uncertainty and/or the forecast wind
radii. Likewise, the values are only calculated for areas along the shoreline, as storm surge does not occur

inland.
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L *Storm Forecast wind Location in cone of *Expected arrival
Rain risk : . .
speed field uncertainty time
Fast None Fully outside Outside cone
2 Medium >34 kts Partially outside *>96 h
3 Slow >50 kts Partially inside *48-96 h
Nearly >64 kis Fully inside *<48 h
stationary
Weight 30% 35% 20% *15%
*Conditional upon being inside cone of uncertainty and/or within forecast wind radii (=1 otherwise)

Table 4: Rain risk forecasts are calculated for each grid cell by assigning a risk score (1-4) based on the
storm speed, location within the forecast wind field (34, 50, 64+ knot intervals), location in the cone of
uncertainty, and the expected arrival time of tropical storm force winds. The scores are weighted, summed,
and rounded to the nearest integer to provide an overall rain threat score (1-4) expressed as green-yellow-
orange-red, respectively. Note: scores for the expected category and forecast period are set to 1 if the grid
cell is not situated within the cone of uncertainty and/or the forecast wind radii. When taken together, the
products capture the rain’s critical forecast elements (e.g., storm’s track, size, forward speed, amount of
uncertainty, evolution with time).
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Figure 2: Example “light system” forecast for Hurricane Irma (2017) approaching the Florida-like, agent-
based model grid. Forecasts are shown at 24 hour intervals, but update every 6 hours (not shown). Left
column: Evolving NHC forecast track (black center line), category (numbers), cone of uncertainty (edges
are outer black lines), and current wind radii at 34 (white), 50 (pink), and 64+ (red) knot intervals. Right
three columns: The light-system threats for wind, surge, and rain are shown for equivalent times in the
simulation, with the forecast track (center black line) and cone of uncertainty (outer black lines) included for
reference. Note: threats are highest when near the center of the forecast cone and when hazards are most
imminent, among other factors.
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Figure 3: The evacuation order decision-making algorithm prescribed to emergency management agents
(EMs) along the coastline. Information used by EMs include the surge light system forecasts (Section 2.2),
estimated arrival time of the storm, and clearance times for each grid cell. Note, clearance times are based
on the Florida Statewide Regional Evacuation Study Program (2019) and are influenced by available road
networks and the number expected to evacuate i.e., based on population density and surge forecasts. For
example, the highest clearance times (40-60 hours) are located in Miami and Tampa Bay during red surge
forecasts; lower clearance times (5-20 hours) occur in rural areas upstate with yellow surge forecasts.
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Figure 4: The evacuation decision-making algorithm for household agents in the model. Based on the
PADM of Lindell and Perry (2012), the process begins when agents combine information obtained from
multiple sources (e.g., forecast information, evacuation orders, and household characteristics) into a
household perceived risk assessment, which is then compared with evacuation barriers (i.e.,
socioeconomic barriers, car ownership) that vary across the agent population. The factor weights (red) vary
between households, as different people perceive risk differently. Prescribed values for the weights are
detailed in Table 7. The exact mathematical process of combing and processing information to produce
evacuation decisions is detailed in Table 5.
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Variable Type Definition Notes

Wind Threat  Dynamic Score from light system normalizedtoa Green =0, Yellow = 33, Orange
0-100 scale =66, Red =100

Surge Threat Dynamic Score from light system normalizedtoa Green = 0, Yellow = 33, Orange
0-100 scale =66, Red =100

Rain Threat Dynamic Score from light system normalizedtoa Green =0, Yellow = 33, Orange
0-100 scale =66, Red =100

Forecast Dynamic The highest score from the wind, rain, Values range from 0-100
and surge threats. This is used to
calculate a household’s perceived risk

Evacuation Dynamic Is an evacuation order issued for the If yes =100.1fno=0
Orders household’s grid cell (yes/no)? This is

used to calculate household perceived

risk
Mobile Home  Static Is the household residing in a mobile If yes =100.1fno=0
Ownership home (yes/no)? This is used to

calculate household perceived risk

Age Static 1-5 score from grid cell (Figure 7) If 1=20, If 2=40, If 3=60, If 4=80,
normalized to 0-100 scale. Thisisused If 5=100
to calculate household perceived risk

Household Dynamic The sum of the forecast, evacuation Values can range from 0-400
perceived orders, mobile home ownership, age
risk factors (each normalized to a 0-100

scale) multiplied by their respective
weights (see Table 7)

Evacuation Static Evacuation barrier is determined by car  If socio=1, barrier = 5-105

barrier ownership/socioeconomic status. If If socio=2, barrier = 10-110
household has a car and household If socio=3, barrier = 15-115
perceived risk > socioeconomic barrier, If socio=4, barrier = 20-120
household will evacuate If socio=5, barrier = 25-125

Table 5: Mathematical formulation of the evacuation decision-making algorithm illustrated in Figure 4. The
algorithm’s inputs (i.e., forecasts, evacuation orders, mobile home ownership, age) are normalized onto a
0-100 scale, weighted (see Table 7 for weights), and summed to produce household risk perception. Risk
perception is weighted against the potential evacuation barriers (i.e., if household has car, barriers are
determined by one’s socioeconomic status); if the household’s perceived risk perception exceeds the
evacuation barriers, a household will evacuate. Dynamic variables update throughout; static variables are
assigned at the beginning of the simulation and do not change.
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socioeconomic status car ownership mh ownership
4 4 3 4 3 3
4 4 1 3 4 3
4 4 2 1 2 2 4
4 4 3 2 2 1 2
3 1 3 2 3 3 3
2 3 3 3 4 4 2
1 3 2 2 2
1 2 2 2 2 2 4
1 1 3 3 3 4 2 1 1

Figure 5: The geographical distribution of household characteristics identified by Huang et al. (2016) as
being most important determinants of hurricane evacuations. The spatial distribution is informed by census
and social vulnerability data for the state of Florida (Flanagan et al. 2011); specifically, by subjectively
projecting the county-level data onto the abstracted, Florida-like agent-based model grid shown here.
Values are ranked on a 1-5 scale, with higher values increasing evacuation intentions e.g., a 5 in mobile
home ownership indicates that grid cell has high rates of mobile home ownership, relative to other grid
cells. These values are used to assign characteristics to individual households (Table 6).
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Variable Type Definition Notes
Socioeconomic  Static Establishes the evacuation If = 1, barrier = random between 5-105
status barrier threshold. Low (high) If = 2, barrier = random between 10-110
values indicate grid cell has less  If = 3, barrier = random between 15-115
(more) financial obstacles to If = 4, barrier = random between 20-120
evacuate If =5, barrier = random between 25-125
Car ownership  Static  Establishes whether a If =1, 96% of households own car
household owns a vehicle. If = 2, 94% of households own car
Carless households do not If = 3, 93% of households own car
evacuate If = 4, 91% of households own car
If =5, 89% of households own car
Mobile home Static Establishes whether a If =1, 5% of houses are mobile
ownership household lives in a mobile If =2, 10% of houses are mobile
home. If home is mobile, will If = 3, 20% of houses are mobile
increase risk perception If = 4, 33% of houses are mobile
If =5, 46% of houses are mobile
Age Static  Indicates how age will influence  These values are not translated down to

evacuations. High values
increase perceived household
risk

the household level i.e., everyone in the

grid cell has the same 1-5 value.

Table 6: The mathematical process of translating the geographical distribution of household characteristics
to individual households. At the beginning of the simulation, the model checks the agent’s location and
subsequent values in Figure 7, then stochastically assigns household characteristics at the rates
established above. These variables are static, meaning they are assigned at the beginning of the simulation
and do not change, but serve as inputs into the agent decision-making algorithm described in Figure 4 and

Table 5.
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Weight Type Definition Notes

Evacuation Static Trust in evacuation orders from EMs Random between
order 0-1
Forecast Static Trust in forecast information i.e., the light system Random between
0-0.8
Mobile home  Static Agent belief in whether their housing type influences Random between
perceived risk 0-10
Age Static Agent belief in whether household age influences Random between
perceived risk 0-0.1
wind Static Household’s perceived vulnerability to wind Random between
0.1-1
Surge Static Household’s perceived vulnerability to surge Random between
0-1
Rain Static Household’s perceived vulnerability to rain Random between
0-0.9

Table 7: The weighting of key variables in the household evacuation decision-making algorithms illustrated
in Figure 4. Weights are designed to reflect the relative importance of each factors (e.g., evacuation orders,
forecast information, mobile home ownership, and age, in that order) as established in Huang et al. (2016).
For the individual hazards, Senkbeil et al. (2019) show that households typically perceive wind as the
primary threat over surge and rain.
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Variable Type Definition Notes

Departure times ~ Static Time between when an agent decides to Random between 0-12
evacuate and when they actually leave hours

Erratic drivers Static Percent of moments in which a driver may 5%
act “erratically” by randomly slowing down

Patience Dynamic Household patience i.e., the amount of Random between 0 and the

threshold time a household is willing to spend estimated time of arrival of
waiting to get onto a heavily trafficked tropical storm force wind.
road

Left/right Static Agents in the bottom row of tiles can 40% westward, 60%
choose between moving left/right on the eastward
lower interstate

Destinations Static The number of evacuees in the bottom 4 50%

(out-of-state) rows of tiles who evacuate out-of-state
(top six rows all evacuate out-of-state)

Destinations Static The number of accommodations available %z of each grid cell’s overall

(inland) to in-state-evacuees population

Random Static The frequency of accidents along the two  1-3 random accidents per

accident outer interstates i.e., 1-95 and |-75. These  hour

frequency stop traffic for 10 minutes

Table 8: Key variables for vehicle agents and their implementation in the experiments discussed in this
article. These parameters are the default settings for the experiments detailed in Section 4.1. Static
variables are assigned once a vehicle decides to evacuate and does not change, whereas dynamic
variables do change throughout the simulation.
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Idealized ABM

100 K 300 K

Actual Population

Type Symbol Direction Way Lanes
Interstate — N-bound One-way 5
Interstate — E/W-bound Two-way 6
Low High
Highway P E/W-bound One-way 2
ABM Population

Figure 6: The agent-based model is depicted as a 10 x 4 grid representing the north-south axis of Florida.
Agents inside the grid are subjectively populated and characterized based on 2019 census data (left: color
filled). Note there are 16.4m agents total, which equates to 4.1m households. Major cities depicted include
Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and
Orlando (orange star). The available road network (e.g., road type, direction, number of lanes) is shown
(left) with supporting table (bottom right). Agents are generally instructed to flee northward and to areas of

lower risk.
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Agent-Based Model Traffic

Figure 7: Sample of evacuation traffic generated by the agent-based traffic model during Hurricane Irma

(2017). Agents are vehicles (dots) which progress along a 4-km segment of highway (y-axis) over a 5-

minute period (x-axis). Colors depict vehicle speed — full speed traffic (red dots) moves unobstructed, while

erratic drivers trigger abrupt slowdowns and traffic (blue dots) which builds over time.
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Experiment Storm  Goal Run details
a) Default Irma To establish a baseline of the 1: Inputs described in Tables 1-8
spatial and temporal patterns of
evacuation decisions and traffic
(section 4.1)
b) Evacuation Irma Turn “off” each decision-making 1: Forecast weight =0
decision-making input one-by-one and determine
inputs influence of each (section 4.2) 2: Evacuation order weight = 0
3: Age weight=0
4: Mobile home weight =0
¢) Varying Irma Adjust clearance times at each grid 1: Evacuation orders 10 h earlier
evacuation order cell to examine the influence of
timing changing evacuation order timing 2: Evacuation orders 10 h later
(section 4.3)
3: Clearance times equal
4: Clearance times equal and 10 h
earlier
d) Varying Irma Adjust population distribution to 1: Uniform population distribution
population examine the influence of
density population density of evacuations
(section 4.4)
e) Implementing Irma Adjust the number lanes on 1: +1 lane on I-95
contraflow various highways to examine the
influence of contraflow on 2:+1lane on I-75
evacuations (section 4.5)
3: +1 lane on both 1-95/1-75
f) Default Dorian To examine how the default 1: Default inputs (Tables 1-8) but

parameter values carry over to a
new storm scenario (section 4.6)

with Dorian light system forecasts

Table 9: The different sets of experiments reported in this article. The main goals are to establish the
broader spatial and temporal patterns of evacuation behaviors for Hurricane Irma (2017). We then
intentionally perturb the model system (i.e., our virtual laboratory) to assess the relative importance and
general response of key factors in the model, including the model’s response to a new storm, Hurricane

Dorian (2019).
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