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Conceptualizing and implementing an agent-based modeling framework to examine the hurricane 

evacuation dynamics. Authors: Austin Harris, Dr. Paul Roebber, Dr. Rebecca Morss. 

1. Introduction 

The 3-10-day forecasts for Hurricane Irma (2017) called for landfall as a major hurricane near Miami, likely 

spurring the largest evacuation in US history (FDEM 2017). However, the forecasts then shifted westward, 

with eventual landfall near Tampa Bay–St. Petersburg, a common evacuation destination in the event, while 

leaving Miami largely unscathed (Cangialosi et al. 2018; Wong et al. 2018). Similarly, uncertainties in 

Hurricane Rita’s (2005) track and intensity forecasts, combined with the aftermath of Hurricane Katrina, led 

to mass evacuations and severe traffic jams in Houston–Galveston. The worst of the storm missed the 

area, but had Rita struck Houston–Galveston directly, the consequences could have been severe, as many 

evacuees were stranded on area roads (Zhang et al. 2007; Knabb et al. 2006).  

The events are relevant since the forecasts were fairly accurate, with the westward shift of Irma’s track 

falling within the National Hurricane Center’s (NHC) cone of uncertainty (Cangialosi et al. 2018), and Rita’s 

forecast track being less erroneous than most (Knabb et al. 2006). However, forecasts were less successful 

in providing useful guidance for many affected by the events, and they demonstrate how evacuations – the 

primary means of protective action from hurricanes – are a complex process involving many physical-social 

parts and uncertainties that evolve over time (e.g., Morss et al. 2017; Barton 2014; Trainor et al. 2012; 

Miller and Page 2007). Because of these complex dynamics, preventing loss of life remains a formidable 

challenge.  

Empirical studies provide key insight to different aspects of hurricane evacuations, such as how evacuation 

decisions are made (e.g., Huang et al. 2016; Lindell and Perry 2012; Baker 1991). However, it’s difficult to 

empirically study the full evacuation system, in all of its complexity, across multiple cases. Thus, 

computational models provide a complementary tool where empirical knowledge can be codified and used 

to run virtual experiments for a variety of hurricane scenarios, real and imagined (e.g., Morss et al. 2017, 

Watts et al. 2019). Along those lines, recent coupled-model experiments demonstrate the potential to model 

the complete hurricane evacuation system in one framework (e.g., Watts et al. 2019; Blanton et al. 2018; 

Fossell et al. 2017). Theoretically, the framework – particularly one involving agent-based simulations 

(Barton 2014; Miller and Page 2007) – could examine the hurricane evacuation system dynamics 

holistically, which has not yet been done.     

This article details a new agent-based modeling platform for investigating the complex dynamics of the 

integrated hurricane evacuation system. Specifically, empirically-informed models are built representing 

three interwoven elements relevant to hurricane evacuations: the natural hazard (hurricane, forecasts, 

warning information), the human system (information flow, evacuation-related decisions), and the built 

environment (infrastructure, evacuation traffic). NHC products represent the hurricane, forecasts, and 
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warning information. Two agent-based models replicate the flow of information, evacuee decision-making, 

and evacuation infrastructure, routing, and traffic. By integrating the models into a unified, agent-based 

framework, we create a virtual laboratory uniquely positioned to advance fundamental knowledge of the 

system’s behavior (Figure 1).  

The philosophy guiding the model’s development is to represent key aspects of real-world hurricane 

evacuations established in the literature, while remaining sufficiently idealized to explore system dynamics 

and build fundamental knowledge (e.g., see Watts et al. 2019; Sun et al. 2016). The model is implemented 

for and validated against data from two past hurricane affecting the Florida peninsula, Hurricane Irma (2017) 

and Hurricane Dorian (2019). However, the model can be extended to a variety of hurricane scenarios, real 

or imagined, and additional regions or landscapes beyond the one described herein.  

One core feature of the model involves representing dynamic and uncertain forecast information about the 

hurricane as it moves across the virtual landscape. Heterogeneous household agents combine the warning 

information with knowledge of the built environment to generate complex evacuation decisions. Another 

core feature involves vehicle agents fleeing across an idealized road network and interacting to produce 

evacuation traffic. Each of these features combine to produce complex evacuation phenomena which are 

impossible to detect using empirical methods.  

Previous modeling studies of the hurricane evacuation system are fragmented, meaning they sufficiently 

represent some features while ignoring and oversimplifying others. For example, one body of work uses 

agent-based modeling to study evacuation planning for hurricanes (e.g., Madireddy et al. 2011; Zhang et 

al 2009; Chen 2008, 2012; Zhan and Chen 2008; Chen and Zhan 2004, 2006). Such work focuses primarily 

on the evacuation traffic while oversimplifying the forecasts, warning information, and evacuation decision-

making. Another body of work uses agent-based models to study warning information flow and evacuation 

decision making (see, e.g., Dixon et al. 2017; Yin et al. 2014; Widener et al. 2013; Watts et al. 2019; Morss 

et al. 2017; Czajkowski 2011; Hasan et al. 2013). However, these studies do not represent the evacuation 

traffic or the built environment. Arguably the most comprehensive model of the hurricane evacuation system 

is Blanton et al. (2018) and Davidson et al. (2018), as they integrate the forecast, evacuation-decisions, 

and evacuation traffic into one system. However, the evacuation models are non-agent-based, as they were 

designed for operational use instead of knowledge-building and experimentation.  

Building on previous work, here we describe the conceptualization and implementation of a new agent-

based modeling laboratory which integrates the natural hazard, the human system, and the built 

environment together in a unified, agent-based framework. As such, the model is uniquely positioned to 

examine the hurricane evacuation dynamics holistically. That is, to establish the relative importance of 

factors, interactions between systems, and the broader emergent patterns. After describing the model 

components, we present results from experiments illustrating how large-scale patterns of evacuation can 

emerge from the individual decisions of many heterogeneous agents as they interact with each other, and 
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with their physical and informational environments. For the model development and research shown here, 

simulations are performed on a simplified representation of Florida – a place frequently visited by tropical 

systems and with notable mass evacuations like Irma (Keim et al. 2007). The model was designed to be 

flexible, however, and thus the modeling framework can be modified to study other regions and hurricanes.  

The paper’s structure is similar to the Watts et al. (2019) publication in Environmental Modeling & Software. 

Section 2 provides an overview of the new model and its key components (i.e., its conceptualization and 

implementation). Section 3 describes the experimental design and the intended data analysis. Section 4 

presents the results, including the spatial and temporal patterns in evacuation decisions and evacuation 

traffic. It then investigates the sensitivity of the model’s behavior to changes in key parameter sets (e.g., 

the agents’ weighting of different types of information, the timing of evacuation orders, the geographic 

distribution of the agent population, and use of contraflow to improve traffic) and compares results for two 

different hurricanes, Irma (2017) and Dorian (2019). Section 5 summarizes key results, discusses 

implications of this work, and proposes future research.  

2. Conceptual model and implementation  

This section describes the major model components and key design elements. The model code was created 

using the Fortran programming language. This was preferred over existing agent-based software as it 

provides full control over all model parameters and thus creates a virtual laboratory well suited to perform 

experiments. For further details, the commented code, an ODD specification (a formal, detailed model 

description), and supporting input files are available for download at the CoMSES model library 

(Paul/Rebecca: I will look into this soon).  

The model system includes a spatially explicit virtual world representing a geographical area of interest 

(described in section 2.1); a dynamic hurricane – and forecast information about it – that passes through 

that world (section 2.2); a multi-agent model where information is interpreted by millions of heterogenous 

agents and used to make evacuation decisions (section 2.3); and a traffic model where agents evacuate 

across the virtual world as the hurricane approaches (section 2.4). These components are conceptually 

and numerically interconnected as shown in Figure 1. The simulations shown here use a 30 minute time 

step for the evacuation decision-making model (Figure 1b), a 1.2 second time step for the traffic model 

(Figure 1c), and run for 144 and 184 hours in the cases of Irma and Dorian, respectively.  

To design and implement the model, we integrate expertise in agent-based modeling, social science, and 

meteorology with knowledge and data from meteorology, emergency management, protective decision 

making, risk communication, social vulnerabilities, and traffic modeling. As in any modeling effort, numerous 

aspects of the model are simplified and some real-world processes are not represented. Decisions about 

what to include in the model were based on our research questions (e.g., to explore the broad system 

dynamics), review of relevant literature, and discussions among our research team. That said, elements of 
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the model presented here could be modified (or expanded upon) to address research questions other than 

the ones described here.  

2.1.  The virtual world  

The virtual world is a cellular representation of a geographic area of interest. In this modeling framework, 

that world represents the north-south axis of Florida (US) abstracted as a 10 x 4 geographical domain. 

Florida is selected as it is an area highly susceptible to hurricanes, and has experienced notable mass 

evacuations such as Irma (2017). The grid spacing is coarse by design (40 grid spaces) as the project’s 

goal is to explore the broader system dynamics, and to provide a starting point for more complex 

experiments. Census data informs the spatial distribution of agent households on the abstracted grid, while 

social vulnerability information is used to prescribe household characteristics known to influence 

evacuations (section 2.3). For the built infrastructure, virtual highways and interstates designed to mimic 

Florida’s road network are overlaid on the model grid (section 2.4). Details regarding the construction of 

each model system – the natural hazard, the human system, and the built environment (Figure 1) – is 

provided in the next three subsections.  

2.2. The natural system (hurricane, forecasts, and warning information) 

The modeled world includes a hurricane that approaches the model domain. The storm and its forecasts 

can be real or synthetic; here we simulate real, historical storms using archived NHC products (available at 

https://www.nhc.noaa.gov/gis/). These products track the storm’s location, size and intensity via wind radii 

at 34, 50, 64+ knot intervals, and forward speed as it progresses across the virtual world (Table 1a). 

Forecast products used include the forecast track, storm category, current and forecast wind radii (34, 50, 

64+ knot intervals), cone of uncertainty, and the arrival time of tropical storm force winds (Table 1b). The 

current and forecast information update every 6-hours, and when taken together, the products capture the 

critical forecast elements (e.g., storm’s track, intensity, size, forward speed, amount of uncertainty) and 

their evolution with time. NHC products are preferred over ensembles (Blanton et al. 2018; Davidson et al. 

2018) as they more closely resemble forecasts seen by the public (Demuth et al. 2012), and can be 

manually perturbed to assess the evacuation’s sensitivities to the forecast (section 4.6). Note: the products 

are a starting point, but the model can be extended to include additional forecast and warning information, 

if desired. In this article, NHC forecast products are obtained for Hurricanes Irma (2017) and Dorian (2019), 

which represent forecast scenarios with different tracks, speeds, forecast errors, and subsequently, 

different evacuation behaviors (e.g., Wong et al. 2018, Mongold et al. 2020).   

Products are synthesized into a “light system” forecast of the three major hazards known to drive 

evacuation: wind, surge, and rain. The approach resembles the Meteoalarm web platform 

(http://www.meteoalarm.eu) where hazard risk are displayed in traffic-light color-coding (green, yellow, 

orange, red). Reds are reserved for severe and rare events, while also capturing some degree 

http://www.meteoalarm.eu/
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of immanency (i.e., reds are warnings, yellows are watches) (Alfieri et al. 2012). The light system is 

advantageous as it (1) synthesizes the forecast for public consumption like TV personnel do (Demuth et al. 

2009), and (2) provides means to connect forecast products with the agent-based model grid where 

evacuation decisions are made (Figure 1b).  

Light system forecasts are created in GIS by overlaying products onto the 10 x 4 agent-based model grid. 

At each of the 40 grid cells, wind forecasts are made by combining the storm’s expected category, forecast 

wind radii, the cone of uncertainty, and the expected time of arrival products for that location. The 

mathematical process of combining the information is described in Table 2. The same inputs determine 

surge forecasts, plus the storm’s approach angle and inundation susceptibility, which is estimated using 

NHC’s potential storm surge inundation products (Table 3). Rain forecasts are made using the storms 

forward speed, wind radii (to approximate the size of the rain field), the cone of uncertainty, and the 

expected time of arrival of tropical storm force winds (Table 4). For each hazard, inputs are weighted with 

values informed by the literature (e.g., Rezapour and Baldock 2014), and team expertise in meteorology 

and risk perception. Though the ideal weighting is unknown, sensitivity tests on the light system weighting 

(not shown) suggest the weights do not change the forecasts (and subsequent evacuations) in any 

meaningful way.  

Figure 2 presents the light system forecasts for Hurricane Irma (2017) at 24 hour intervals. The early NHC 

forecasts depict the most likely scenario as a landfalling major hurricane near Miami. However, the 

forecasts and actual track eventually shifted westward as confidence increases, with a first landfall in the 

Florida Keys and a second near Tampa Bay. The light system captures the gradual westward shift in 

threats. Moreover, the threats increase with time as confidence grows, at least for areas inside the 

narrowing cone of uncertainty. Because of these features, and because of the sensitivity tests on the system 

weighting (not shown), the light system appears capable of representing the hurricane and hurricane 

forecasts in the integrated modeling system. As a result, the model becomes the first to use synthesized 

NHC products in an agent-based modeling framework, and alongside Watts et al. (2019) and Morss et al. 

(2017), contains one of the most sophisticated representations of hurricane forecast information to date in 

models of the hurricane evacuation system. 

2.3. The human system (information flow, evacuation-related decisions) 

With the synthesized light system forecasts as inputs, an agent-based model simulates the “human system” 

i.e., information flow and evacuation-related decisions (Figure 1b). This includes two types of agents: 

emergency management agents who issue evacuation orders, and household agents (i.e., the public) who 

collect information, assess risks, and make protective decisions. An overview of the agents and their 

decision-making algorithms is described below.  
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As the hurricane approaches the coastline, emergency management agents (EMs) in the model decide 

whether to issue evacuation orders for each grid cell. The decision-making process is as follows: EMs issue 

evacuation orders when (1) the surge forecast is yellow-orange-red, and (2) when the estimated arrival time 

of tropical storm force winds equals the grid cell’s clearance times, which is the estimated time needed to 

safely evacuate the area. This process is represented schematically in Figure 3 and is based on research 

by Demuth et al. (2012), Dye et al. (2014), and Bostrom et al. (2016) as well as the analysis in Cutter (2019). 

Clearance times are based on the Florida Statewide Regional Evacuation Study Program (2019) and are 

influenced by the available road networks and the number expected to evacuate, which is determined by 

population density and the surge forecasts. For example, the highest clearance times (40–60 hours) are 

located in Miami and Tampa Bay during red surge forecasts; lower clearance times (5–20 hours) occur in 

rural areas upstate with yellow surge forecasts. Since surge is not expected inland, only coastal counties 

can issue evacuation orders. Future versions of the model could include more complex decision making 

processes, including variations in how EMs make decisions and/or weight various pieces of information.  

The second type of agent, household agents, represent groups of four individuals. These agents collect 

information about the hurricane, assess risk posed by the storm, and decide whether the risk warrants 

evacuation. The design of the evacuation decision-making algorithms prescribed to these agents was 

adapted from conceptual models of protective decision-making for hazards, such as the Protective Action 

Decision Model (PADM; Lindell and Perry, 2012; see hurricane applications in Lazo et al. 2015; Huang et 

al. 2017; Watts et al. 2019), and findings from empirical research on decision-making for hurricanes (e.g., 

Baker, 1991; Dow and Cutter, 2002; Dash and Gladwin, 2007; Morss and Hayden, 2010; Bowser and Cutter 

2015; Huang et al., 2016, Morss et al., 2016, Demuth et al., 2016; Cuite et al., 2017; Bostrom et al., 2018; 

Demuth et al., 2018). As noted in Watts et al (2019), a major challenge is to synthesize the conceptual 

PADM model and information from empirical analyses into simple yet sufficiently specific instructions for 

agents. For the purposes of our model, we are not seeking a perfectly realistic algorithm; but one that 

captures the main processes so we can examine the broader evacuation dynamics holistically. To do so, 

we synthesized the relevant literature which suggests that people evacuate when they believe the hurricane 

poses a risk, that different people perceive risk differently and have different evacuation barriers (e.g., 

Baker, 1991; Dash and Gladwin, 2007; Lazo et al., 2015), and that factors with the strongest influence on 

evacuation decisions are forecast information, evacuation orders, and household characteristics such as 

age, socioeconomic status, and car ownership. Thus, we construct the decision-making algorithms by 

combining information obtained from these key sources (i.e.., forecast information, evacuation orders, age, 

mobile home residence) into a risk assessment, which is then compared with evacuation barriers (i.e., 

socioeconomic barriers, car ownership) that vary across the agent population. Undecided agents seek 

information and update decisions every 30 minutes, making agents active participants in the risk 

communication process (Watts et al. 2019; Morss et al. 2017; Mileti and Sorensen 1990, Sadri et al. 2017). 

The decision-making algorithm is depicted schematically in Figure 4; specific mathematical formulation is 

provided in Table 5.  
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Household agent characteristics are prescribed by subjectively translating county-level census and social 

vulnerability data (Flanagan et al. 2011) regarding mobile home ownership, age, car ownership, and 

socioeconomic status onto the model. Grid cells in the model are ranked between 1–5 (Figure 5), with 

higher values representing variables which increase evacuation intentions (e.g., a 5 in mobile home 

ownership indicates a grid cell has high rates of mobile homes, relative to other grid cells). Once the 

geographical distribution of variables is sorted between cells, specific characteristics are stochastically 

assigned to individual households (Table 6). Again, the idea is to not perfectly represent the real-world 

characteristics, but to generally capture its geographical distribution, and to have a wide range of 

characteristics within grid cells. This results in many heterogeneous agents – 4.1 million households total 

(Figure 6) – with unique preferences and characteristics.     

To account for complexities in how people process and value different information, factors influencing risk 

perception and evacuation barriers are weighed differently between households (Figure 4; Table 7). For 

example, some agents are concerned about evacuation orders while others are not; some are concerned 

about their mobile home’s durability while others are not, and so on. Varying the weights captures this 

effect. In addition, varying the weights indirectly represents other factors such as culture and worldviews, 

which are sometimes important (Lazrus et al. 2020; Morss et al. 2020). In the model, weight distributions 

are stochastically generated for each household with specified ranges informed by the literature (e.g., 

Senkbeil et al. 2019; Bostrom et al. 2018; Petrolia et al. 2011; Meyer et al. 2014; Morss and Hayden 2010; 

Brommer and Senkbeil 2010; Peacock et al. 2005).      

One noteworthy simplification of the decision-making algorithm is that households do not share forecast 

information with other agents. Another is that they do not consider social cues, such as seeing other people 

evacuate, which can increase one’s risk perception. Although these processes are known to influence 

people’s risk assessments and behaviors (e.g., Dash and Gladwin, 2007; Lindell and Perry, 2012; Demuth 

et al., 2018), we do not include them as the added detail further complicates the interpretation of results. 

However, such features could be added in future model versions, depending on the intended research 

goals.  

2.4  The built environment (infrastructure, evacuation routing, and traffic) 

Once evacuees decide to depart, a second idealized, agent-based model simulates the infrastructure, 

evacuation routing, and traffic (Figure 1c). The model’s road network (Figure 6) consists of two northbound, 

five-lane interstates (blue lines) – representing Florida’s I-75 and I-95 – situated on the edges of the grid 

i.e., along the “coasts.” Meanwhile eight, two-lane highways (red arrows) move inland residents onto the 

outer interstates where they flee northward to safety (blue arrows). Additionally, two east-west running, 

three-lane interstates (purple arrows) – representing Florida’s I-75 and I-4 – allow residents to move 

horizontally across the grid (e.g., from Miami towards Tampa Bay, or inland towards Orlando). Though 
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idealized, the built infrastructure should capture the main elements of Florida’s real world road network. 

However, future ABMs could add complex road structures, if desired.   

If a household decides to evacuate, evacuating agents are instructed to depart within twelve hours of the 

evacuation decision (Huang et al. 2012, Lindell et al. 2005, Murray-Tuite 2019). Departure times are 

generated stochastically. Evacuees are also assigned a destination where late and low income evacuees 

move to local shelters. The rest seek accommodations where the forecast hazard risk is lower and where 

accommodations are available (i.e., upstate, out-of-state, inland, and in metropolitian areas; Table 8). 

Departing households are assigned a vehicle and look for available spots on the nearest highway (Figure 

6; red/purple arrows). If spots are unavailable for a period of time due to traffic, evacuees lose patience, 

abandon the evacuation and shelter in-place instead. For those who enter the road, rules governing vehicle 

movement are simple: drivers accelerate when they can, slow down if they must, and do not accelerate at 

the speed limit (70 mph on interstates, 50 mph on roads) or behind another car. Lane switching is not 

permitted in this model for simplicity but could be added in future models. Some drivers exhibit erratic 

behaviors by randomly braking, which can cause significant traffic jams. Accidents are stochastically 

generated, with a frequency based on Robinson et al. (2009). In regard to route selection, we simplify the 

complex process by assigning agents the shortest route to their destination (Sadri et al. 2014). Once 

assigned, evacuee routes do not change. The default settings for the parameters is described in Table 8.  

A segment of evacuation traffic generated by the agent-based model is shown in Figure 7. Congestion (blue 

streaks) occurs from abrupt slowdowns by erratic drivers. Similar congestion (not shown) happens at 

intersections, in densely populated regions, and by accidents or gas shortages. For example, in the 

experiments shown in section 4.1, considerable traffic occurs along I-75 and I-95 northbound due to the 

Miami-Tampa Bay metropolitan areas being in the storm’s path. Similar traffic patterns were observed 

during Irma’s actual evacuation (e.g., Zhu et al., 2020; Cava 2018). Because of the model realism – both 

at micro-scales and in aggregate – we believe the agent-based model represents the traffic dynamics at a 

sufficient resolution to achieve the proposed goals.   
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Figure 1: The conceptualized model system developed for the study, which includes three interconnected 

systems of hurricane evacuations: (a) the natural hazard (b) the human system, and (c) the built 

environment, represented by NHC forecast products and two agent-based models, respectively (italics). 

Coupling the idealized models creates a virtual laboratory uniquely positioned to perform experiments which 

are impossible to conduct in the real-world. For example, model components are perturbed in different ways 

to see how elements interact in the system context. In this way, they advance our understanding of the 

hurricane evacuation system dynamics.  
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a) Current storm characteristics  

(updated every 6 hours) 

 

b) Forecast information  

(updated every 6 hours) 

Current wind radii (i.e., 64, 50, and 34 knot wind 

speeds in each of 4 quadrants) 

Forecast track 

Current maximum sustained winds (i.e., current 

storm category) 

Forecast maximum sustained winds (i.e., forecast 

storm category) 

Current forward speed Forecast wind radii (i.e., 64, 50, and 34 knot wind 

speeds in each of 4 quadrants) 

 Cone of uncertainty 

 Expected arrival time of tropical storm force winds 

  

Table 1: Archived NHC products used to depict the (a) current storm characteristics and (b) forecast 

information in the model framework. Storm characteristics and forecast information update every 6 hours. 

Consistent with the wind speeds in the NHC data, winds are discussed here in the unit knots (nautical miles 

per hour, equivalent to approximately 1.15 mph or 1.85 km/h). When taken together, the products capture 

the hurricane size and location and critical forecast elements (e.g., storm’s track, intensity, size, forward 

speed, amount of uncertainty, evolution with time). Information was downloaded from 

https://www.nhc.noaa.gov/gis/.  
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Wind 

risk 

*Forecast 

category 

Forecast wind 

field 

Location in cone of 

uncertainty 

*Expected arrival 

time 

1 <TS None Fully outside Outside cone 

2 TS-1 >34 kts Partially outside >96 h 

3 2-3 >50 kts Partially inside 48-96 h 

4 4-5 >64 kts Fully inside <48 h 

Weight 15% 50% 20% 15% 

*Conditional upon being in the cone of uncertainty and/or within forecast wind radii (=1 otherwise) 

Table 2: Wind risk forecasts are calculated for each grid cell by assigning a risk score (1-4) based on the 

storm’s forecast category, forecast wind field (34, 50, 64+ knot intervals), location in the cone of uncertainty, 

and forecast arrival time of tropical storm force winds. The scores are weighted, summed, and rounded to 

the nearest integer to provide an overall wind threat score (1-4) expressed as green-yellow-orange-red, 

respectively. Note: scores for the forecast category and expected arrival time are set to 1 if the grid cell is 

not situated within the cone of uncertainty and/or any forecast wind radii. When taken together, the products 

capture the wind’s critical forecast elements (e.g., storm’s track, intensity, size, forward speed, amount of 

uncertainty, evolution with time). 
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Surge 
risk 

*Inundation 
potential 

*Forecast 
category 

Forecast 
wind field 

*Approach 
angle** 

*Location in 
cone of 

uncertainty 

*Expected 
arrival time** 

1 None <TS None Outside cone Fully outside Outside cone 

2 Weak TS-1 >34 kts Left 
Partially 
outside 

>96 h 

3 Moderate 2-3 >50 kts 
Right and 
parallel 

Partially 
inside 

48-96 h 

4 High 4-5 >64 kts 
Right and 

perpendicular 
Fully inside <48 h 

Weight 12% 12% 25% 16% 20% 15% 

*Conditional upon being along shoreline (i.e., =1 inland) 
** Conditional upon being inside cone of uncertainty and/or within forecast wind radii (=0 otherwise) 

Table 3: Surge risk forecasts are calculated by assigning a risk score (1-4) based on the cell’s inundation 

potential (estimated using NHC’s potential storm surge inundation products), expected category at that 

location, location within the forecast wind field (34, 50, 64+ knot intervals), the storm’s approach angle, the 

location in the cone of uncertainty, and the expected arrival time of tropical storm force winds. The scores 

are weighted, summed, and rounded to the nearest integer to provide an overall surge threat score (1-4) 

expressed as green-yellow-orange-red, respectively. Note: scores for the expected category and expected 

arrival time are set to 1 if the grid cell is not situated within the cone of uncertainty and/or the forecast wind 

radii. Likewise, the values are only calculated for areas along the shoreline, as storm surge does not occur 

inland.  
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Rain risk 
*Storm 
speed 

Forecast wind 
field 

Location in cone of 
uncertainty 

*Expected arrival 
time 

1 Fast None Fully outside Outside cone 

2 Medium >34 kts Partially outside *>96 h 

3 Slow >50 kts Partially inside *48-96 h 

4  
Nearly 

stationary 
>64 kts Fully inside *<48 h 

Weight 30% 35% 20% *15% 

*Conditional upon being inside cone of uncertainty and/or within forecast wind radii (=1 otherwise) 

Table 4: Rain risk forecasts are calculated for each grid cell by assigning a risk score (1-4) based on the 

storm speed, location within the forecast wind field (34, 50, 64+ knot intervals), location in the cone of 

uncertainty, and the expected arrival time of tropical storm force winds. The scores are weighted, summed, 

and rounded to the nearest integer to provide an overall rain threat score (1-4) expressed as green-yellow-

orange-red, respectively. Note: scores for the expected category and forecast period are set to 1 if the grid 

cell is not situated within the cone of uncertainty and/or the forecast wind radii. When taken together, the 

products capture the rain’s critical forecast elements (e.g., storm’s track, size, forward speed, amount of 

uncertainty, evolution with time). 
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Figure 2: Example “light system” forecast for Hurricane Irma (2017) approaching the Florida-like, agent-

based model grid. Forecasts are shown at 24 hour intervals, but update every 6 hours (not shown). Left 

column: Evolving NHC forecast track (black center line), category (numbers), cone of uncertainty (edges 

are outer black lines), and current wind radii at 34 (white), 50 (pink), and 64+ (red) knot intervals. Right 

three columns: The light-system threats for wind, surge, and rain are shown for equivalent times in the 

simulation, with the forecast track (center black line) and cone of uncertainty (outer black lines) included for 

reference. Note: threats are highest when near the center of the forecast cone and when hazards are most 

imminent, among other factors.  

 

 



Page 15 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The evacuation order decision-making algorithm prescribed to emergency management agents 

(EMs) along the coastline. Information used by EMs include the surge light system forecasts (Section 2.2), 

estimated arrival time of the storm, and clearance times for each grid cell. Note, clearance times are based 

on the Florida Statewide Regional Evacuation Study Program (2019) and are influenced by available road 

networks and the number expected to evacuate i.e., based on population density and surge forecasts. For 

example, the highest clearance times (40-60 hours) are located in Miami and Tampa Bay during red surge 

forecasts; lower clearance times (5-20 hours) occur in rural areas upstate with yellow surge forecasts.  
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Figure 4: The evacuation decision-making algorithm for household agents in the model. Based on the 

PADM of Lindell and Perry (2012), the process begins when agents combine information obtained from 

multiple sources (e.g., forecast information, evacuation orders, and household characteristics) into a 

household perceived risk assessment, which is then compared with evacuation barriers (i.e., 

socioeconomic barriers, car ownership) that vary across the agent population. The factor weights (red) vary 

between households, as different people perceive risk differently. Prescribed values for the weights are 

detailed in Table 7. The exact mathematical process of combing and processing information to produce 

evacuation decisions is detailed in Table 5.  
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Variable Type Definition Notes 

Wind Threat Dynamic Score from light system normalized to a 

0-100 scale 

Green = 0, Yellow = 33, Orange 

= 66, Red = 100 

Surge Threat Dynamic Score from light system normalized to a 

0-100 scale 

Green = 0, Yellow = 33, Orange 

= 66, Red = 100 

Rain Threat Dynamic Score from light system normalized to a 

0-100 scale 

Green = 0, Yellow = 33, Orange 

= 66, Red = 100 

Forecast  Dynamic The highest score from the wind, rain, 

and surge threats. This is used to 

calculate a household’s perceived risk  

Values range from 0-100 

Evacuation 

Orders  

Dynamic Is an evacuation order issued for the 

household’s grid cell (yes/no)? This is 

used to calculate household perceived 

risk 

If yes = 100. If no = 0  

Mobile Home 

Ownership 

Static Is the household residing in a mobile 

home (yes/no)? This is used to 

calculate household perceived risk 

If yes = 100. If no = 0  

Age Static 1-5 score from grid cell (Figure 7) 

normalized to 0-100 scale. This is used 

to calculate household perceived risk 

If 1=20, If 2=40, If 3=60, If 4=80, 

If 5=100 

Household 

perceived 

risk 

Dynamic The sum of the forecast, evacuation 

orders, mobile home ownership, age 

factors (each normalized to a 0-100 

scale) multiplied by their respective 

weights (see Table 7)  

Values can range from 0-400  

Evacuation 

barrier 

Static Evacuation barrier is determined by car 

ownership/socioeconomic status. If 

household has a car and household 

perceived risk  > socioeconomic barrier, 

household will evacuate 

 

If socio=1, barrier = 5-105 

If socio=2, barrier = 10-110 

If socio=3, barrier = 15-115 

If socio=4, barrier = 20-120 

If socio=5, barrier = 25-125 

    

Table 5: Mathematical formulation of the evacuation decision-making algorithm illustrated in Figure 4. The 

algorithm’s inputs (i.e., forecasts, evacuation orders, mobile home ownership, age) are normalized onto a 

0-100 scale, weighted (see Table 7 for weights), and summed to produce household risk perception. Risk 

perception is weighted against the potential evacuation barriers (i.e., if household has car, barriers are 

determined by one’s socioeconomic status); if the household’s perceived risk perception exceeds the 

evacuation barriers, a household will evacuate. Dynamic variables update throughout; static variables are 

assigned at the beginning of the simulation and do not change.  
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Figure 5: The geographical distribution of household characteristics identified by Huang et al. (2016) as 

being most important determinants of hurricane evacuations. The spatial distribution is informed by census 

and social vulnerability data for the state of Florida (Flanagan et al. 2011); specifically, by subjectively 

projecting the county-level data onto the abstracted, Florida-like agent-based model grid shown here. 

Values are ranked on a 1-5 scale, with higher values increasing evacuation intentions e.g., a 5 in mobile 

home ownership indicates that grid cell has high rates of mobile home ownership, relative to other grid 

cells. These values are used to assign characteristics to individual households (Table 6). 
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Variable Type Definition Notes 

Socioeconomic 

status 

Static Establishes the evacuation 

barrier threshold. Low (high) 

values indicate grid cell has less 

(more) financial obstacles to 

evacuate 

 

If = 1, barrier = random between 5-105 

If = 2, barrier = random between 10-110 

If = 3, barrier = random between 15-115 

If = 4, barrier = random between 20-120 

If = 5, barrier = random between 25-125 

Car ownership Static Establishes whether a 

household owns a vehicle. 

Carless households do not 

evacuate 

 

If = 1, 96% of households own car 

If = 2, 94% of households own car  

If = 3, 93% of households own car  

If = 4, 91% of households own car  

If = 5, 89% of households own car 

Mobile home 

ownership 

Static Establishes whether a 

household lives in a mobile 

home. If home is mobile, will 

increase risk perception 

 

If = 1, 5% of houses are mobile 

If = 2, 10% of houses are mobile 

If = 3, 20% of houses are mobile 

If = 4, 33% of houses are mobile 

If = 5, 46% of houses are mobile 

Age  Static Indicates how age will influence 

evacuations. High values 

increase perceived household 

risk 

These values are not translated down to 

the household level i.e., everyone in the 

grid cell has the same 1-5 value.  

Table 6: The mathematical process of translating the geographical distribution of household characteristics 

to individual households. At the beginning of the simulation, the model checks the agent’s location and 

subsequent values in Figure 7, then stochastically assigns household characteristics at the rates 

established above. These variables are static, meaning they are assigned at the beginning of the simulation 

and do not change, but serve as inputs into the agent decision-making algorithm described in Figure 4 and 

Table 5.  
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Weight Type Definition Notes 

Evacuation 

order  

Static Trust in evacuation orders from EMs Random between 

0-1 

Forecast  Static Trust in forecast information i.e., the light system Random between 

0-0.8 

Mobile home  Static Agent belief in whether their housing type influences 

perceived risk 

Random between 

0-10 

Age  Static Agent belief in whether household age influences 

perceived risk 

Random between 

0-0.1 

Wind  Static Household’s perceived vulnerability to wind Random between 

0.1-1 

Surge  Static Household’s perceived vulnerability to surge Random between 

0-1 

Rain  Static Household’s perceived vulnerability to rain Random between 

0-0.9 

    

Table 7: The weighting of key variables in the household evacuation decision-making algorithms illustrated 

in Figure 4. Weights are designed to reflect the relative importance of each factors (e.g., evacuation orders, 

forecast information, mobile home ownership, and age, in that order) as established in Huang et al. (2016). 

For the individual hazards, Senkbeil et al. (2019) show that households typically perceive wind as the 

primary threat over surge and rain.  
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Variable Type Definition Notes 

Departure times Static Time between when an agent decides to 

evacuate and when they actually leave 

Random between 0-12 

hours 

Erratic drivers Static Percent of moments in which a driver may 

act “erratically” by randomly slowing down 

5% 

Patience 

threshold 

Dynamic Household patience i.e., the amount of 

time a household is willing to spend 

waiting to get onto a heavily trafficked 

road 

Random between 0 and the 

estimated time of arrival of 

tropical storm force wind.  

Left/right Static Agents in the bottom row of tiles can 

choose between moving left/right on the 

lower interstate 

40% westward, 60% 

eastward  

Destinations 

(out-of-state) 

Static The number of evacuees in the bottom 4 

rows of tiles who evacuate out-of-state 

(top six rows all evacuate out-of-state) 

50% 

Destinations 

(inland) 

Static The number of accommodations available 

to in-state-evacuees 

½ of each grid cell’s overall 

population  

Random 

accident 

frequency 

Static The frequency of accidents along the two 

outer interstates i.e., I-95 and I-75. These 

stop traffic for 10 minutes 

1-3 random accidents per 

hour 

    

Table 8: Key variables for vehicle agents and their implementation in the experiments discussed in this 

article. These parameters are the default settings for the experiments detailed in Section 4.1. Static 

variables are assigned once a vehicle decides to evacuate and does not change, whereas dynamic 

variables do change throughout the simulation. 
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Figure 6: The agent-based model is depicted as a 10 x 4 grid representing the north-south axis of Florida. 

Agents inside the grid are subjectively populated and characterized based on 2019 census data (left: color 

filled). Note there are 16.4m agents total, which equates to 4.1m households. Major cities depicted include 

Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and 

Orlando (orange star). The available road network (e.g., road type, direction, number of lanes) is shown 

(left) with supporting table (bottom right). Agents are generally instructed to flee northward and to areas of 

lower risk.   
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Figure 7: Sample of evacuation traffic generated by the agent-based traffic model during Hurricane Irma 

(2017). Agents are vehicles (dots) which progress along a 4-km segment of highway (y-axis) over a 5-

minute period (x-axis). Colors depict vehicle speed – full speed traffic (red dots) moves unobstructed, while 

erratic drivers trigger abrupt slowdowns and traffic (blue dots) which builds over time. 
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Experiment Storm Goal Run details 

a) Default  Irma To establish a baseline of the 

spatial and temporal patterns of 

evacuation decisions and traffic 

(section 4.1) 

1:  Inputs described in Tables 1-8 

b) Evacuation 

decision-making 

inputs 

Irma Turn “off” each decision-making 

input one-by-one and determine 

influence of each (section 4.2)  

1: Forecast weight = 0 

2: Evacuation order weight = 0 

3: Age weight = 0 

4: Mobile home weight = 0 

c) Varying 

evacuation order 

timing 

Irma Adjust clearance times at each grid 

cell to examine the influence of 

changing evacuation order timing 

(section 4.3)  

1: Evacuation orders 10 h earlier  

2: Evacuation orders 10 h later  

3: Clearance times equal  

4: Clearance times equal and 10 h 

earlier 

d) Varying 

population 

density  

Irma Adjust population distribution to 

examine the influence of 

population density of evacuations 

(section 4.4)  

1: Uniform population distribution 

e) Implementing 

contraflow  

Irma Adjust the number lanes on 

various highways to examine the 

influence of contraflow on 

evacuations (section 4.5) 

1: +1 lane on I-95 

2: +1 lane on I-75 

3: +1 lane on both I-95/I-75 

f) Default  Dorian To examine how the default 

parameter values carry over to a 

new storm scenario (section 4.6) 

1:  Default inputs (Tables 1-8) but 

with Dorian light system forecasts 

    

Table 9: The different sets of experiments reported in this article. The main goals are to establish the 

broader spatial and temporal patterns of evacuation behaviors for Hurricane Irma (2017). We then 

intentionally perturb the model system (i.e., our virtual laboratory) to assess the relative importance and 

general response of key factors in the model, including the model’s response to a new storm, Hurricane 

Dorian (2019).   

 

 


